scATAcat: cell-type annotation for scATAC-seq data

被引:0
|
作者
Altay, Aybuge [1 ]
Vingron, Martin [1 ]
机构
[1] Max Planck Inst Mol Genet, Dept Computat Mol Biol, Ihnestr 63-73, D-14195 Berlin, Germany
关键词
D O I
10.1093/nargab/lqae135
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Cells whose accessibility landscape has been profiled with scATAC-seq cannot readily be annotated to a particular cell type. In fact, annotating cell-types in scATAC-seq data is a challenging task since, unlike in scRNA-seq data, we lack knowledge of 'marker regions' which could be used for cell-type annotation. Current annotation methods typically translate accessibility to expression space and rely on gene expression patterns. We propose a novel approach, scATAcat, that leverages characterized bulk ATAC-seq data as prototypes to annotate scATAC-seq data. To mitigate the inherent sparsity of single-cell data, we aggregate cells that belong to the same cluster and create pseudobulk. To demonstrate the feasibility of our approach we collected a number of datasets with respective annotations to quantify the results and evaluate performance for scATAcat. scATAcat is available as a python package at https://github.com/aybugealtay/scATAcat. Graphical Abstract
引用
收藏
页数:20
相关论文
共 50 条
  • [21] scDART: integrating unmatched scRNA-seq and scATAC-seq data and learning cross-modality relationship simultaneously
    Ziqi Zhang
    Chengkai Yang
    Xiuwei Zhang
    Genome Biology, 23
  • [22] Protocol for optimized nasal mucosa sample processing to obtain high-quality scRNA-seq and scATAC-seq data
    Huang, Yaling
    Wu, Yisha
    Han, Shikai
    Wang, Qiaoling
    Cong, Guomingxiu
    Liu, Zhongzhen
    Guan, Shuyan
    Huang, Xiaojuan
    Liu, Ying
    Yin, Jianhua
    Xue, Jinmei
    Liu, Chuanyu
    STAR PROTOCOLS, 2024, 5 (03):
  • [23] Identifying the chromatin accessibility states of oligodendrocytes during development and in disease with scATAC-seq
    Meijer, M.
    Agirre, E.
    Chen, X.
    Heskol, A.
    Gezelius, H.
    Linnarsson, S.
    Chang, H.
    Castelo-Branco, G.
    GLIA, 2019, 67 : E293 - E293
  • [24] Integrative scATAC-seq and scRNA-seq analyses map thymic iNKT cell development and identify Cbfβ for its commitment
    Wang, Jie
    Adrianto, Indra
    Subedi, Kalpana
    Liu, Tingting
    Wu, Xiaojun
    Yi, Qijun
    Loveless, Ian
    Yin, Congcong
    Datta, Indrani
    Sant'Angelo, Derek B. B.
    Kronenberg, Mitchell
    Zhou, Li
    Mi, Qing-Sheng
    CELL DISCOVERY, 2023, 9 (01)
  • [25] Integrative scATAC-seq and scRNA-seq analyses map thymic iNKT cell development and identify Cbfβ for its commitment
    Jie Wang
    Indra Adrianto
    Kalpana Subedi
    Tingting Liu
    Xiaojun Wu
    Qijun Yi
    Ian Loveless
    Congcong Yin
    Indrani Datta
    Derek B. Sant’Angelo
    Mitchell Kronenberg
    Li Zhou
    Qing-Sheng Mi
    Cell Discovery, 9
  • [26] Depth-corrected multi-factor dissection of chromatin accessibility for scATAC-seq data with PACS
    Miao, Zhen
    Wang, Jianqiao
    Park, Kernyu
    Kuang, Da
    Kim, Junhyong
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [27] scATAC-seq generates more accurate and complete regulatory maps than bulk ATAC-seq
    Gur, E. Ravza
    Hughes, Jim R.
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [28] Benchmarking bulk and single-cell variant-calling approaches on Chromium scRNA-seq and scATAC-seq libraries
    Wiens, Matthew
    Farahani, Hossein
    Scott, R. Wilder
    Underhill, T. Michael
    Bashashati, Ali
    GENOME RESEARCH, 2024, 34 (08) : 1196 - 1210
  • [29] Functional characterization of eQTLs and asthma risk loci with scATAC-seq across immune cell types and contexts
    Wei, Julong
    Resztak, Justyna A.
    Ranjbaran, Ali
    Wen, Xiaoquan
    Luca, Francesca
    Pique-Regi, Roger
    Wei, Julong
    Resztak, Justyna A.
    Ranjbaran, Ali
    Alazizi, Adnan
    Mair-Meijers, Henriette E.
    Slatcher, Richard B.
    Zilioli, Samuele
    Wen, Xiaoquan
    Luca, Francesca
    Pique-Regi, Roger
    AMERICAN JOURNAL OF HUMAN GENETICS, 2025, 112 (02)
  • [30] scAWMV: an adaptively weighted multi-view learning framework for the integrative analysis of parallel scRNA-seq and scATAC-seq data
    Zeng, Pengcheng
    Ma, Yuanyuan
    Lin, Zhixiang
    BIOINFORMATICS, 2023, 39 (01)