scATAcat: cell-type annotation for scATAC-seq data

被引:0
|
作者
Altay, Aybuge [1 ]
Vingron, Martin [1 ]
机构
[1] Max Planck Inst Mol Genet, Dept Computat Mol Biol, Ihnestr 63-73, D-14195 Berlin, Germany
关键词
D O I
10.1093/nargab/lqae135
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Cells whose accessibility landscape has been profiled with scATAC-seq cannot readily be annotated to a particular cell type. In fact, annotating cell-types in scATAC-seq data is a challenging task since, unlike in scRNA-seq data, we lack knowledge of 'marker regions' which could be used for cell-type annotation. Current annotation methods typically translate accessibility to expression space and rely on gene expression patterns. We propose a novel approach, scATAcat, that leverages characterized bulk ATAC-seq data as prototypes to annotate scATAC-seq data. To mitigate the inherent sparsity of single-cell data, we aggregate cells that belong to the same cluster and create pseudobulk. To demonstrate the feasibility of our approach we collected a number of datasets with respective annotations to quantify the results and evaluate performance for scATAcat. scATAcat is available as a python package at https://github.com/aybugealtay/scATAcat. Graphical Abstract
引用
收藏
页数:20
相关论文
共 50 条
  • [41] scATAC-Seq reveals heterogeneity associated with spermatogonial differentiation in cultured male germline stem cells
    Hoi Ching Suen
    Alfred Chun Shui Luk
    Jinyue Liao
    Scientific Reports, 12 (1)
  • [42] scATAC-Seq reveals heterogeneity associated with spermatogonial differentiation in cultured male germline stem cells
    Suen, Hoi Ching
    Luk, Alfred Chun Shui
    Liao, Jinyue
    SCIENTIFIC REPORTS, 2022, 12 (01):
  • [43] Cell-type annotation with accurate unseen cell-type identification using multiple references
    Xiong, Yi-Xuan
    Wang, Meng-Guo
    Chen, Luonan
    Zhang, Xiao-Fei
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (06)
  • [44] Building gene regulatory networks from scATAC-seq and scRNA-seq using Linked Self Organizing Maps
    Jansen, Camden
    Ramirez, Ricardo N.
    El-Ali, Nicole C.
    Gomez-Cabrero, David
    Tegner, Jesper
    Merkenschlager, Matthias
    Conesa, Ana
    Mortazavi, Ali
    PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (11)
  • [45] scGAA: a general gated axial-attention model for accurate cell-type annotation of single-cell RNA-seq data
    Kong, Tianci
    Yu, Tiancheng
    Zhao, Jiaxin
    Hu, Zhenhua
    Xiong, Neal
    Wan, Jian
    Dong, Xiaoliang
    Pan, Yi
    Zheng, Huilin
    Zhang, Lei
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [46] CIForm as a Transformer-based model for cell-type annotation of large-scale single-cell RNA-seq data
    Xu, Jing
    Zhang, Aidi
    Liu, Fang
    Chen, Liang
    Zhang, Xiujun
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)
  • [47] Automated methods for cell type annotation on scRNA-seq data
    Pasquini, Giovanni
    Arias, Jesus Eduardo Rojo
    Schaefer, Patrick
    Busskamp, Volker
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 961 - 969
  • [48] Multiplexed analysis of gene expression and chromatin accessibility of human umbilical cord blood using scRNA-Seq and scATAC-Seq
    Hou, Xianliang
    Wang, Ying-Lan
    Shi, Wei
    Hu, Wenlong
    Zeng, Zhipeng
    Liu, Jiayi
    Li, Lian
    Cai, Wanxia
    Tang, Donge
    Dai, Yong
    MOLECULAR IMMUNOLOGY, 2022, 152 : 207 - 214
  • [49] Integrative analysis of scRNA-seq and scATAC-seq revealed transit-amplifying thymic epithelial cells expressing autoimmune regulator
    MIyao, Takahisa
    Miyauchi, Maki
    Kelly, S. Thomas
    Terooatea, Tommy W.
    Ishikawa, Tatsuya
    Oh, Eugene
    Hirai, Sotaro
    Horie, Kenta
    Takakura, Yuki
    Ohki, Houko
    Hayama, Mio
    Maruyama, Yuya
    Seki, Takao
    Ishii, Hiroto
    Yabukami, Haruka
    Yoshida, Masaki
    Inoue, Azusa
    Sakaue-Sawano, Asako
    Miyawaki, Atsushi
    Muratani, Masafumi
    Minoda, Aki
    Akiyama, Nobuko
    Akiyama, Taishin
    ELIFE, 2022, 11
  • [50] scRNA-seq与scATAC-seq数据整合分析方法及其在生物医学中的应用
    孟子行
    李艳国
    戎浩
    廖奇
    中国细胞生物学学报, 2024, 46 (11) : 1985 - 1996