Non-parametric manifold learning

被引:0
|
作者
Asta, Dena Marie [1 ]
机构
[1] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2024年 / 18卷 / 02期
关键词
Manifold learning; graph Laplacian; consistency; Connes' distance formula; Laplace-Beltrami operator; Wasserstein distance; DECONVOLUTION;
D O I
10.1214/24-EJS2291
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce an estimator for distances in a compact Riemannian manifold based on graph Laplacian estimates of the Laplace-Beltrami operator. We upper bound the error in the estimate of manifold distances, or more precisely an estimate of a spectrally truncated variant of manifold distance of interest in non-commutative geometry (cf. [Connes and Suijelekom, 2020]), in terms of spectral errors in the graph Laplacian estimates and, implicitly, several geometric properties of the manifold. A consequence is a proof of consistency for (untruncated) manifold distances. The estimator resembles, and in fact its convergence properties are derived from, a special case of the Kontorovic dual reformulation of Wasserstein distance known as Connes' Distance Formula.
引用
收藏
页码:3903 / 3930
页数:28
相关论文
共 50 条
  • [41] Non-Parametric Parametricity
    Nei, Georg
    Dreyer, Derek
    Rossberg, Andreas
    ICFP'09: PROCEEDINGS OF THE 2009 ACM SIGPLAN INTERNATIONAL CONFERENCE ON FUNCTIONAL PROGRAMMING, 2009, : 135 - 148
  • [42] Non-parametric parametricity
    Neis, Georg
    Dreyer, Derek
    Rossberg, Andreas
    JOURNAL OF FUNCTIONAL PROGRAMMING, 2011, 21 : 497 - 562
  • [43] Parametric and Non-parametric Encompassing Procedures
    Bontemps, Christophe
    Florens, Jean-Pierre
    Richard, Jean-Francois
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2008, 70 : 751 - 780
  • [44] Early warning of structural damage via manifold learning-aided data clustering and non-parametric probabilistic anomaly detection
    Entezami, Alireza
    Sarmadi, Hassan
    Behkamal, Bahareh
    Mariani, Stefano
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 224
  • [45] Non-parametric Statistical Learning for URLLC Transmission Rate Control
    Zhang, Wenheng
    Derakhshani, Mahsa
    Lambotharan, Sangarapillai
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [46] Non-parametric Bayesian Dictionary Learning for Image Super Resolution
    He, Li
    Qi, Hairong
    Zaretzki, Russell
    2011 FUTURE OF INSTRUMENTATION INTERNATIONAL WORKSHOP (FIIW), 2011,
  • [47] Non-parametric Learning to Aid Path Planning over Slopes
    Karumanchi, Sisir
    Allen, Thomas
    Bailey, Tim
    Scheding, Steve
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2010, 29 (08): : 997 - 1018
  • [48] Learning control for non-parametric uncertainties with new convergence property
    Yang, Z.
    Chan, C. W.
    IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (10): : 2177 - 2183
  • [49] Feature Selection with Non-Parametric Mutual Information for Adaboost Learning
    Baro, Xavier
    Vitria, Jordi
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2005, 131 : 131 - 138
  • [50] Non-Parametric Learning Technique for Activity Recognition in Elderly Patients
    Ghosh, Nimisha
    Maity, Satyabrata
    Maity, Krishanu
    Saha, Sayantan
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 1 - 6