Non-parametric manifold learning

被引:0
|
作者
Asta, Dena Marie [1 ]
机构
[1] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2024年 / 18卷 / 02期
关键词
Manifold learning; graph Laplacian; consistency; Connes' distance formula; Laplace-Beltrami operator; Wasserstein distance; DECONVOLUTION;
D O I
10.1214/24-EJS2291
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce an estimator for distances in a compact Riemannian manifold based on graph Laplacian estimates of the Laplace-Beltrami operator. We upper bound the error in the estimate of manifold distances, or more precisely an estimate of a spectrally truncated variant of manifold distance of interest in non-commutative geometry (cf. [Connes and Suijelekom, 2020]), in terms of spectral errors in the graph Laplacian estimates and, implicitly, several geometric properties of the manifold. A consequence is a proof of consistency for (untruncated) manifold distances. The estimator resembles, and in fact its convergence properties are derived from, a special case of the Kontorovic dual reformulation of Wasserstein distance known as Connes' Distance Formula.
引用
收藏
页码:3903 / 3930
页数:28
相关论文
共 50 条
  • [21] Non-Parametric Kernel Learning with robust pairwise constraints
    Changyou Chen
    Junping Zhang
    Xuefang He
    Zhi-Hua Zhou
    International Journal of Machine Learning and Cybernetics, 2012, 3 : 83 - 96
  • [22] Learning Non-Parametric Surrogate Losses With Correlated Gradients
    Yoa, Seungdong
    Park, Jinyoung
    Kim, Hyunwoo J.
    IEEE ACCESS, 2021, 9 : 141199 - 141209
  • [23] Learning Non-Parametric Surrogate Losses with Correlated Gradients
    Yoa, Seungdong
    Park, Jinyoung
    Kim, Hyunwoo J.
    IEEE Access, 2021, 9 : 141199 - 141209
  • [24] Learning Data-adaptive Non-parametric Kernels
    Liu, Fanghui
    Huang, Xiaolin
    Gong, Chen
    Yang, Jie
    Li, Li
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [25] LEARNING A SPARSE GENERATIVE NON-PARAMETRIC SUPERVISED AUTOENCODER
    Barlaud, Michel
    Guyard, Frederic
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3315 - 3319
  • [26] Embedded non-parametric kernel learning for kernel clustering
    Liu, Mingming
    Liu, Bing
    Zhang, Chen
    Sun, Wei
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2017, 28 (04) : 1697 - 1715
  • [27] A Family of Simple Non-Parametric Kernel Learning Algorithms
    Zhuang, Jinfeng
    Tsang, Ivor W.
    Hoi, Steven C. H.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 1313 - 1347
  • [28] Embedded non-parametric kernel learning for kernel clustering
    Mingming Liu
    Bing Liu
    Chen Zhang
    Wei Sun
    Multidimensional Systems and Signal Processing, 2017, 28 : 1697 - 1715
  • [29] Optimal learning for sequential sampling with non-parametric beliefs
    Barut, Emre
    Powell, Warren B.
    JOURNAL OF GLOBAL OPTIMIZATION, 2014, 58 (03) : 517 - 543
  • [30] Non-Parametric Kernel Learning with robust pairwise constraints
    Chen, Changyou
    Zhang, Junping
    He, Xuefang
    Zhou, Zhi-Hua
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2012, 3 (02) : 83 - 96