Non-parametric manifold learning

被引:0
|
作者
Asta, Dena Marie [1 ]
机构
[1] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2024年 / 18卷 / 02期
关键词
Manifold learning; graph Laplacian; consistency; Connes' distance formula; Laplace-Beltrami operator; Wasserstein distance; DECONVOLUTION;
D O I
10.1214/24-EJS2291
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce an estimator for distances in a compact Riemannian manifold based on graph Laplacian estimates of the Laplace-Beltrami operator. We upper bound the error in the estimate of manifold distances, or more precisely an estimate of a spectrally truncated variant of manifold distance of interest in non-commutative geometry (cf. [Connes and Suijelekom, 2020]), in terms of spectral errors in the graph Laplacian estimates and, implicitly, several geometric properties of the manifold. A consequence is a proof of consistency for (untruncated) manifold distances. The estimator resembles, and in fact its convergence properties are derived from, a special case of the Kontorovic dual reformulation of Wasserstein distance known as Connes' Distance Formula.
引用
收藏
页码:3903 / 3930
页数:28
相关论文
共 50 条
  • [31] Learning data-adaptive non-parametric kernels
    Liu, Fanghui
    Huang, Xiaolin
    Gong, Chen
    Yang, Jie
    Li, Li
    Journal of Machine Learning Research, 2020, 21
  • [32] Differentially Private Non-parametric Machine Learning as a Service
    Dandekar, Ashish
    Basu, Debabrota
    Bressan, Stephane
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PT I, 2019, 11706 : 189 - 204
  • [33] Non-parametric expectation maximization: A learning automata approach
    Abd-Almageed, W
    El-Osery, A
    Smith, CE
    2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 2996 - 3001
  • [34] Non-parametric Imitation Learning of Robot Motor Skills
    Huang, Yanlong
    Rozo, Leonel
    Silverio, Joao
    Caldwell, Darwin G.
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 5266 - 5272
  • [35] Monocular range sensing: A non-parametric learning approach
    Plagemann, Christian
    Endres, Felix
    Hess, Juergen
    Stachniss, Cyrill
    Burgard, Wolfram
    2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-9, 2008, : 929 - 934
  • [36] Optimal learning for sequential sampling with non-parametric beliefs
    Emre Barut
    Warren B. Powell
    Journal of Global Optimization, 2014, 58 : 517 - 543
  • [37] Non-parametric residual variance estimation in supervised learning
    Liitiaeinen, Elia
    Lendasse, Amaury
    Corona, Francesco
    COMPUTATIONAL AND AMBIENT INTELLIGENCE, 2007, 4507 : 63 - +
  • [38] NON-PARAMETRIC STRINGS
    GAMBINI, R
    TRIAS, A
    PHYSICS LETTERS B, 1988, 200 (03) : 280 - 284
  • [39] Non-parametric Econometrics
    Leong, Chee Kian
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2012, 175 : 1072 - 1072
  • [40] Non-Parametric Parametricity
    Neis, Georg
    Dreyer, Derek
    Rossberg, Andreas
    ACM SIGPLAN NOTICES, 2009, 44 (8-9) : 135 - 148