Non-parametric manifold learning

被引:0
|
作者
Asta, Dena Marie [1 ]
机构
[1] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2024年 / 18卷 / 02期
关键词
Manifold learning; graph Laplacian; consistency; Connes' distance formula; Laplace-Beltrami operator; Wasserstein distance; DECONVOLUTION;
D O I
10.1214/24-EJS2291
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce an estimator for distances in a compact Riemannian manifold based on graph Laplacian estimates of the Laplace-Beltrami operator. We upper bound the error in the estimate of manifold distances, or more precisely an estimate of a spectrally truncated variant of manifold distance of interest in non-commutative geometry (cf. [Connes and Suijelekom, 2020]), in terms of spectral errors in the graph Laplacian estimates and, implicitly, several geometric properties of the manifold. A consequence is a proof of consistency for (untruncated) manifold distances. The estimator resembles, and in fact its convergence properties are derived from, a special case of the Kontorovic dual reformulation of Wasserstein distance known as Connes' Distance Formula.
引用
收藏
页码:3903 / 3930
页数:28
相关论文
共 50 条
  • [1] Bayesian non-parametric inference for manifold based MoCap representation
    Natola, Fabrizio
    Ntouskos, Valsamis
    Sanzari, Marta
    Pirri, Fiora
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4606 - 4614
  • [2] LEARNING NON-PARAMETRIC MODELS OF PRONUNCIATION
    Hutchinson, Brian
    Droppo, Jasha
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 4904 - 4907
  • [3] Non-parametric Representation Learning with Kernels
    Esser, Pascal
    Fleissner, Maximilian
    Ghoshdastidar, Debarghya
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 11, 2024, : 11910 - 11918
  • [4] Imitation Learning with Non-Parametric Regression
    Vaandrager, Maarten
    Babuska, Robert
    Busoniu, Lucian
    Lopes, Gabriel A. D.
    2012 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS, THETA 18TH EDITION, 2012, : 91 - 96
  • [5] To be parametric or non-parametric, that is the question Parametric and non-parametric statistical tests
    Van Buren, Eric
    Herring, Amy H.
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2020, 127 (05) : 549 - 550
  • [6] Non-parametric Inverse Curvature Flows in the AdS-Schwarzschild Manifold
    Li Chen
    Jing Mao
    The Journal of Geometric Analysis, 2018, 28 : 921 - 949
  • [7] Non-parametric Inverse Curvature Flows in the AdS-Schwarzschild Manifold
    Chen, Li
    Mao, Jing
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (02) : 921 - 949
  • [8] NON-PARAMETRIC TREND TESTS FOR LEARNING DATA
    JONCKHEERE, AR
    BOWER, GH
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1967, 20 : 163 - +
  • [9] Non-Parametric Learning for Natural Plan Generation
    Baldwin, Ian
    Newman, Paul
    IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, : 4311 - 4317
  • [10] Discriminative Non-Parametric Learning of Arithmetic Circuits
    Ramanan, Nandini
    Das, Mayukh
    Kersting, Kristian
    Natarajan, Sriraam
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 353 - 364