Improved lightweight infrared road target detection method based on YOLOv8

被引:0
|
作者
Yao, Jialong [1 ]
Xu, Sheng [1 ]
Feijiang, Huang [2 ]
Su, Chengyue [1 ]
机构
[1] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Peoples R China
[2] Guangzhou Maritime Univ, Coll Informat & Commun Engn, Guangzhou 510725, Peoples R China
关键词
Deep learning; Infrared target detection; YOLOv8; Lightweight; Edge devices; NETWORK;
D O I
10.1016/j.infrared.2024.105497
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Infrared-based road scene object detection algorithms often face issues with excessive parameters and computational demands, making them incompatible with edge devices having constrained computational capabilities. This paper introduces an enhanced lightweight infrared-based road object detection algorithm based on YOLOv8n. Firstly, a streamlined network architecture is devised by merging YOLOv8n's C2f module with PConv, creating a lighter module and reducing the neural network's downsampling rate of infrared images. This strategy reduces redundant computations and memory access, preventing the loss of fine details in infrared images caused by deep convolutional neural networks. Additionally, the model's accuracy in detecting infrared targets is significantly enhanced through the integration of the coordinate attention mechanism. Finally, replacing CIoU with Wise-IoU for bounding box regression in YOLOv8n accelerates the model's convergence. Empirical findings indicate that in contrast to the YOLOv8n algorithm, the optimized model showcases a 34.17 % reduction in model size, a 40.35 % decrease in parameters, and a 4.8 % increase in average detection accuracy. This enhanced algorithm not only achieves a lightweight profile but also delivers superior performance on embedded edge devices.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Target Detection of Diamond Nanostructures Based on Improved YOLOv8 Modeling
    Guo, Fengxiang
    Guo, Xinyun
    Guo, Lei
    Wang, Yibao
    Wang, Qinhang
    Liu, Shousheng
    Zhang, Mei
    Zhang, Lili
    Gai, Zhigang
    NANOMATERIALS, 2024, 14 (13)
  • [42] A Universal Tire Detection Method Based on Improved YOLOv8
    Guo, Chi
    Chen, Mingxia
    Wu, Junjie
    Hu, Haipeng
    Huang, Luobing
    Li, Junjie
    IEEE ACCESS, 2024, 12 : 174770 - 174781
  • [43] Lightweight construction safety behavior detection model based on improved YOLOv8
    Kan Huang
    Mideth B. Abisado
    Discover Applied Sciences, 7 (4)
  • [44] A lightweight Yunnan Xiaomila detection and pose estimation based on improved YOLOv8
    Wang, Fenghua
    Tang, Yuan
    Gong, Zaipeng
    Jiang, Jin
    Chen, Yu
    Xu, Qiang
    Hu, Peng
    Zhu, Hailong
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [45] An underwater crack detection method based on improved YOLOv8
    Li, Xiaofei
    Xu, Langxing
    Wei, Mengpu
    Zhang, Lixiao
    Zhang, Chen
    OCEAN ENGINEERING, 2024, 313
  • [46] Target Detection Algorithm for UAV Images Based on Improved YOLOv8
    改进 YOLOv8 的无人机航拍图像目标检测算法
    Liang, Yan (liangyan@cqupt.edu.cn), 2025, 61 (01) : 121 - 130
  • [47] AMW-YOLOv8n: Road Scene Object Detection Based on an Improved YOLOv8
    Wu, Donghao
    Fang, Chao
    Zheng, Xiaogang
    Liu, Jue
    Wang, Shengchun
    Huang, Xinyu
    ELECTRONICS, 2024, 13 (20)
  • [48] Target Detection Algorithm Based on Improved YOLOv8 for Hynobius Amjiensis
    Huang, Sheng
    Shen, Jiaxiao
    Ling, Zaiying
    Wang, Xianting
    Zhang, Dengrong
    Wang, Jiapeng
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 1257 - 1262
  • [49] Improved Lightweight Bearing Defect Detection Algorithm of YOLOv8
    Yao, Jingli
    Cheng, Guang
    Wan, Fei
    Zhu, Deping
    Computer Engineering and Applications, 2024, 60 (21) : 205 - 214
  • [50] Lightweight rail surface defect detection algorithm based on an improved YOLOv8
    Xu, CanYang
    Liao, Yingying
    Liu, Yongqiang
    Tian, Runliang
    Guo, Tao
    MEASUREMENT, 2025, 242