Target Detection of Diamond Nanostructures Based on Improved YOLOv8 Modeling

被引:1
|
作者
Guo, Fengxiang [1 ,2 ,3 ]
Guo, Xinyun [1 ]
Guo, Lei [1 ]
Wang, Yibao [1 ,2 ]
Wang, Qinhang [1 ]
Liu, Shousheng [1 ,2 ]
Zhang, Mei [2 ,3 ]
Zhang, Lili [1 ,2 ]
Gai, Zhigang [1 ,2 ]
机构
[1] Qilu Univ Technol, Inst Oceanog Instrumentat, Shandong Acad Sci, Qingdao 250316, Peoples R China
[2] Qilu Univ Technol, Natl Engn & Technol Res Ctr Marine Monitoring Equi, Shandong Prov Key Lab Ocean Environm Monitoring Te, Inst Oceanog Instrumentat,Shandong Acad Sci, Qingdao 250316, Peoples R China
[3] Laoshan Lab, Qingdao 250316, Peoples R China
基金
国家重点研发计划;
关键词
YOLOv8; DCN_C2f; shuffle attention; WIoU; diamond nanostructure; NETWORK;
D O I
10.3390/nano14131115
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Boron-doped diamond thin films exhibit extensive applications in chemical sensing, in which the performance could be further enhanced by nano-structuring of the surfaces. In order to discover the relationship between diamond nanostructures and properties, this paper is dedicated to deep learning target detection methods. However, great challenges, such as noise, unclear target boundaries, and mutual occlusion between targets, are inevitable during the target detection of nanostructures. To tackle these challenges, DWS-YOLOv8 (DCN + WIoU + SA + YOLOv8n) is introduced to optimize the YOLOv8n model for the detection of diamond nanostructures. A deformable convolutional C2f (DCN_C2f) module is integrated into the backbone network, as is a shuffling attention (SA) mechanism, for adaptively tuning the perceptual field of the network and reducing the effect of noise. Finally, Wise-IoU (WIoU)v3 is utilized as a bounding box regression loss to enhance the model's ability to localize diamond nanostructures. Compared to YOLOv8n, a 9.4% higher detection accuracy is achieved for the present model with reduced computational complexity. Additionally, the enhancement of precision (P), recall (R), mAP@0.5, and mAP@0.5:0.95 is demonstrated, which validates the effectiveness of the present DWS-YOLOv8 method. These methods provide effective support for the subsequent understanding and customization of the properties of surface nanostructures.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] UAV Target Detection Algorithm Based on Improved YOLOv8
    Wang, Feng
    Wang, Hongyuan
    Qin, Zhiyong
    Tang, Jiaying
    IEEE ACCESS, 2023, 11 : 116534 - 116544
  • [2] POD PEPPER TARGET DETECTION BASED ON IMPROVED YOLOv8
    Shen, Jiayv
    Kong, Qingzhong
    Liu, Yanghao
    Ma, Na
    INMATEH - Agricultural Engineering, 2024, 74 (03): : 273 - 282
  • [3] RVDR-YOLOv8: A Weed Target Detection Model Based on Improved YOLOv8
    Ding, Yuanming
    Jiang, Chen
    Song, Lin
    Liu, Fei
    Tao, Yunrui
    ELECTRONICS, 2024, 13 (11)
  • [4] Research on Infrared Dim Target Detection Based on Improved YOLOv8
    Liu, Yangfan
    Li, Ning
    Cao, Lihua
    Zhang, Yunfeng
    Ni, Xu
    Han, Xiyu
    Dai, Deen
    REMOTE SENSING, 2024, 16 (16)
  • [5] Target Detection Algorithm for UAV Images Based on Improved YOLOv8
    改进 YOLOv8 的无人机航拍图像目标检测算法
    Liang, Yan (liangyan@cqupt.edu.cn), 2025, 61 (01) : 121 - 130
  • [6] Target Detection Algorithm Based on Improved YOLOv8 for Hynobius Amjiensis
    Huang, Sheng
    Shen, Jiaxiao
    Ling, Zaiying
    Wang, Xianting
    Zhang, Dengrong
    Wang, Jiapeng
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 1257 - 1262
  • [7] GLU-YOLOv8: An Improved Pest and Disease Target Detection Algorithm Based on YOLOv8
    Yue, Guangbo
    Liu, Yaqiu
    Niu, Tong
    Liu, Lina
    An, Limin
    Wang, Zhengyuan
    Duan, Mingyu
    FORESTS, 2024, 15 (09):
  • [8] EDS-YOLOv8: An Improved Multiscale Vehicle Target Detection Algorithm Based on YOLOv8
    Xu, Degang
    Wang, Shuangchen
    Sun, Xiaole
    Yin, Kedong
    PROCEEDINGS OF THE 2024 3RD INTERNATIONAL SYMPOSIUM ON INTELLIGENT UNMANNED SYSTEMS AND ARTIFICIAL INTELLIGENCE, SIUSAI 2024, 2024, : 250 - 256
  • [9] A Raisin Foreign Object Target Detection Method Based on Improved YOLOv8
    Ning, Meng
    Ma, Hongrui
    Wang, Yuqian
    Cai, Liyang
    Chen, Yiliang
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [10] The Target Detection of Wear Particles in Ferrographic Images Based on the Improved YOLOv8
    Wong, Jinyi
    Wei, Haijun
    Zhou, Daping
    Cao, Zheng
    LUBRICANTS, 2024, 12 (08)