Improved lightweight infrared road target detection method based on YOLOv8

被引:0
|
作者
Yao, Jialong [1 ]
Xu, Sheng [1 ]
Feijiang, Huang [2 ]
Su, Chengyue [1 ]
机构
[1] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Peoples R China
[2] Guangzhou Maritime Univ, Coll Informat & Commun Engn, Guangzhou 510725, Peoples R China
关键词
Deep learning; Infrared target detection; YOLOv8; Lightweight; Edge devices; NETWORK;
D O I
10.1016/j.infrared.2024.105497
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Infrared-based road scene object detection algorithms often face issues with excessive parameters and computational demands, making them incompatible with edge devices having constrained computational capabilities. This paper introduces an enhanced lightweight infrared-based road object detection algorithm based on YOLOv8n. Firstly, a streamlined network architecture is devised by merging YOLOv8n's C2f module with PConv, creating a lighter module and reducing the neural network's downsampling rate of infrared images. This strategy reduces redundant computations and memory access, preventing the loss of fine details in infrared images caused by deep convolutional neural networks. Additionally, the model's accuracy in detecting infrared targets is significantly enhanced through the integration of the coordinate attention mechanism. Finally, replacing CIoU with Wise-IoU for bounding box regression in YOLOv8n accelerates the model's convergence. Empirical findings indicate that in contrast to the YOLOv8n algorithm, the optimized model showcases a 34.17 % reduction in model size, a 40.35 % decrease in parameters, and a 4.8 % increase in average detection accuracy. This enhanced algorithm not only achieves a lightweight profile but also delivers superior performance on embedded edge devices.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Research on the lightweight detection method of rail internal damage based on improved YOLOv8
    Xiaochun Wu
    Shuzhan Yu
    Journal of Engineering and Applied Science, 2025, 72 (1):
  • [22] Research on a Lightweight Method for Maize Seed Quality Detection Based on Improved YOLOv8
    Niu, Siqi
    Xu, Xiaolin
    Liang, Ao
    Yun, Yuliang
    Li, Li
    Hao, Fengqi
    Bai, Jinqiang
    Ma, Dexin
    IEEE ACCESS, 2024, 12 : 32927 - 32937
  • [23] A Lightweight Remote Sensing Small Target Image Detection Algorithm Based on Improved YOLOv8
    Nie, Haijiao
    Pang, Huanli
    Ma, Mingyang
    Zheng, Ruikai
    SENSORS, 2024, 24 (09)
  • [24] UAV Target Detection Algorithm Based on Improved YOLOv8
    Wang, Feng
    Wang, Hongyuan
    Qin, Zhiyong
    Tang, Jiaying
    IEEE ACCESS, 2023, 11 : 116534 - 116544
  • [25] POD PEPPER TARGET DETECTION BASED ON IMPROVED YOLOv8
    Shen, Jiayv
    Kong, Qingzhong
    Liu, Yanghao
    Ma, Na
    INMATEH - Agricultural Engineering, 2024, 74 (03): : 273 - 282
  • [26] Lightweight insulator defect detection algorithm based on improved YOLOv8
    Tang, Mingyue
    Wu, Hang
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 197 - 201
  • [27] A lightweight rice pest detection algorithm based on improved YOLOv8
    Zheng, Yong
    Zheng, Weiheng
    Du, Xia
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [28] Fasteners quantitative detection and lightweight deployment based on improved YOLOv8
    Bai, Tangbo
    Duan, Jiaming
    Wang, Ying
    Fu, Haochen
    Zong, Hao
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (10):
  • [29] A Lightweight Fire Detection Algorithm Based on the Improved YOLOv8 Model
    Ma, Shuangbao
    Li, Wennan
    Wan, Li
    Zhang, Guoqin
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [30] BL-YOLOv8: An Improved Road Defect Detection Model Based on YOLOv8
    Wang, Xueqiu
    Gao, Huanbing
    Jia, Zemeng
    Li, Zijian
    SENSORS, 2023, 23 (20)