Water gradient manipulation through the polymer electrolyte membrane of an operating microfluidic water electrolyzer

被引:1
|
作者
Krause, Kevin [1 ,2 ]
Crete-Laurence, Adele [1 ,2 ]
Michau, Dominique [3 ]
Clisson, Gerald [4 ]
Battaglia, Jean-Luc [1 ,2 ]
Chevalier, Stephane [1 ,2 ]
机构
[1] Univ Bordeaux, CNRS, UMR 5295, Bordeaux INP,I2M, F-33400 Talence, France
[2] CNRS, UMR 5295, Arts & Metiers Inst Technol, Bordeaux INP,I2M, F-33400 Talence, France
[3] Univ Bordeaux, CNRS, UMR 5026, ICMCB,Bordeaux INP, F-33600 Pessac, France
[4] Univ Bordeaux, CNRS, UMR 5258, Syensqo,LOF, F-33600 Pessac, France
关键词
Microfluidics; Polymer electrolyte membrane; Water electrolysis; Operando imaging; Infrared spectroscopy; Distribution of relaxation times; HYDROGEN-PRODUCTION; NAFION; TRANSPORT; HYDRATION;
D O I
10.1016/j.jpowsour.2024.235297
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The key component of a polymer electrolyte membrane (PEM) water splitting electrolyzer is its membrane. Despite decades of research, the transport phenomena occurring within the membrane during electrolysis - which are vital to the device's efficiency - have yet to be fully understood. In this work, controlling the anolyte concentration can effectively be used to tune the PEM water gradient, but it comes with a tradeoff in electrochemical performance. Infrared (IR) imaging is coupled with electrochemical impedance spectroscopy and distribution of relaxation times to elucidate the relationship between membrane hydration and ohmic, kinetic, and mass transport losses. Varied H2SO4 anolyte concentrations manifested water diffusion gradients through the PEM of the electrolyzer, where the strongest water diffusion gradients | Delta lambda(fit) | (relative to open circuit voltage) were observed for the most concentrated anolyte. However, tuning the anolyte concentration came with a tradeoff between a lower ohmic resistance (from 4.4 Omega cm(-2) to 4.0 Omega cm(-2) for 0.1 mol L-1 to 1.0 mol L-1 H2SO4 anolyte) and higher kinetic and mass transport losses accompanied by increasingly unstable performance. These findings showcase the potential of IR imaging when coupled with a microfluidic PEM electrolyzer and electrochemical characterization techniques, and the influence of anolyte concentration for manipulating the PEM water gradient.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Three-dimensional microstructure analysis of a polymer electrolyte membrane water electrolyzer anode
    Hegge, Friedemann
    Moroni, Riko
    Trinke, Patrick
    Bensmann, Boris
    Hanke-Rauschenbach, Richard
    Thiele, Simon
    Vierrath, Severin
    JOURNAL OF POWER SOURCES, 2018, 393 : 62 - 66
  • [12] Design and performance of a solid polymer electrolyte water electrolyzer
    Millet, P
    Andolfatto, F
    Durand, R
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1996, 21 (02) : 87 - 93
  • [13] Membrane water-flow rate in electrolyzer cells with a solid polymer electrolyte (SPE)
    Li, Xiaojin
    Qu, Shuguo
    Yu, Hongmei
    Hou, Ming
    Shao, Zhigang
    Yi, Baolian
    JOURNAL OF POWER SOURCES, 2009, 190 (02) : 534 - 537
  • [14] Recent Advances in Polymer Electrolyte Membrane Water Electrolyzer Stack Development Studies: A Review
    Kisti, Murat
    Huner, Bulut
    Albadwi, Abdelmola
    Ozdogan, Emre
    Uzgoren, Ilayda Nur
    Uysal, Suleyman
    Conagasi, Marise
    Suzen, Yakup Ogun
    Demir, Nesrin
    Kaya, Mehmet Fatih
    ACS OMEGA, 2025, 10 (10): : 9824 - 9853
  • [15] Solid-polymer-electrolyte tritiated water electrolyzer for Water Detritiation System
    Iwai, Yasunori
    Yamanishi, Toshihiko
    Hiroki, Akihiro
    Yagi, Toshiaki
    Tamada, Masao
    FUSION SCIENCE AND TECHNOLOGY, 2008, 54 (02) : 458 - 461
  • [16] Iridium Selenium Oxyhydroxide Shell for Polymer Electrolyte Membrane Water Electrolyzer with Low Ir Loading
    Kim, Myeong-Geun
    Lee, Hyun Ju
    Lee, Tae Kyung
    Lee, Eungjun
    Jin, Haneul
    Park, Jae-Hyun
    Cho, Se Youn
    Lee, Sungho
    Ham, Hyung Chul
    Yoo, Sung Jong
    ACS ENERGY LETTERS, 2024, 9 (06): : 2876 - 2884
  • [17] Theoretical analysis of the effect of boiling on the electrolysis voltage of a polymer electrolyte membrane water electrolyzer (PEMWE)
    Li, Linjun
    Nakajima, Hironori
    Moriyama, Atsushi
    Ito, Kohei
    JOURNAL OF POWER SOURCES, 2023, 575
  • [18] Magnetic Resonance Imaging of Water in Operating Polymer Electrolyte Membrane Fuel Cells
    Tsushima, S.
    Hirai, S.
    FUEL CELLS, 2009, 9 (05) : 506 - +
  • [19] Optimum structural properties for an anode current collector used in a polymer electrolyte membrane water electrolyzer operated at the boiling point of water
    Li, Hua
    Fujigaya, Tsuyohiko
    Nakajima, Hironori
    Inada, Akiko
    Ito, Kohei
    JOURNAL OF POWER SOURCES, 2016, 332 : 16 - 23
  • [20] Degradation Effects at the Porous Transport Layer/Catalyst Layer Interface in Polymer Electrolyte Membrane Water Electrolyzer
    Liu, Chang
    Shviro, Meital
    Bender, Guido
    Gago, Aldo S.
    Morawietz, Tobias
    Dzara, Michael J.
    Biswas, Indro
    Gazdzicki, Pawel
    Kang, Zhenye
    Zaccarine, Sarah F.
    Pylypenko, Svitlana
    Friedrich, K. Andreas
    Carmo, Marcelo
    Lehnert, Werner
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (03)