Fine-scale population mapping on Tibetan Plateau using the ensemble machine learning methods and multisource data

被引:1
|
作者
Zhang, Huiming [1 ]
Fu, Jingqiao [1 ]
Li, Feixiang [1 ]
Chen, Qian [1 ]
Ye, Tao [2 ,3 ]
Zhang, Yili [4 ,5 ,6 ]
Yang, Xuchao [1 ]
机构
[1] Zhejiang Univ, Ocean Coll, Zhoushan 316021, Peoples R China
[2] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol E, Beijing 100875, Peoples R China
[3] Beijing Normal Univ, Fac Geog Sci, Beijing 100875, Peoples R China
[4] Chinese Acad Sci, Key Lab Land Surface Pattern & Simulat, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[5] CAS Ctr Excellence Tibetan Plateau Earth Sci, Beijing 100101, Peoples R China
[6] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
关键词
Population spatialization; Ensemble model; Nighttime light; Tibetan Plateau; Location -based services data; NIGHTTIME LIGHT; LAND-COVER; REGION; DEGRADATION;
D O I
10.1016/j.ecolind.2024.112307
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
The Tibetan Plateau, known for its high elevation and sparse population distribution, heavily depends on gridded population data to enhance disaster prevention and management strategies. This study utilizes multi-source physical geographic and socio-economic factors to delineate the population distribution across the plateau. Using data from the seventh National Census in 2020, we apply three individual machine learning methods (Random Forest, GBDT, and XGBoost) and two multi-model ensemble methods (weighted average ensemble and stacking ensemble) to spatialize the population data into a 100-meter grid. The results reveal that the spatialization accuracy of all models exceeds that of the WorldPop dataset. Specifically, the Random Forest model (RMSE = 4061.09, nRMSE = 44.71 %) and the stacking ensemble model (RMSE = 4094.47, nRMSE = 44.26 %) demonstrate the highest accuracy among the individual and ensemble models, respectively. Emphasizing the importance of integrating multi-source big data, Tencent location-based services data emerges as a crucial variable across all models. This study highlights the effectiveness of ensemble models and multi-source big data in improving population mapping accuracy, especially in regions with complex terrains.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Fine-scale mapping of quantitative trait loci using historical recombinations
    Xiong, MI
    Guo, SW
    GENETICS, 1997, 145 (04) : 1201 - 1218
  • [32] Fine-Scale Characteristics and Dominant Synoptic Factors of Spring Precipitation Over Complex Terrain of the Southeastern Tibetan Plateau
    Zhao, Yin
    Li, Jian
    Ren, Liwen
    Li, Nina
    Li, Puxi
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2023, 128 (11)
  • [33] Fine-scale malaria risk mapping from routine aggregated case data
    Hugh JW Sturrock
    Justin M Cohen
    Petr Keil
    Andrew J Tatem
    Arnaud Le Menach
    Nyasatu E Ntshalintshali
    Michelle S Hsiang
    Roland D Gosling
    Malaria Journal, 13
  • [34] Mapping fine-scale visual quality distribution inside urban streets using mobile LiDAR data
    Wu, Bin
    Yu, Bailang
    Shu, Song
    Liang, Handong
    Zhao, Yi
    Wu, Jianping
    BUILDING AND ENVIRONMENT, 2021, 206
  • [35] Fine-scale malaria risk mapping from routine aggregated case data
    Sturrock, Hugh J. W.
    Cohen, Justin M.
    Keil, Petr
    Tatem, Andrew J.
    Le Menach, Arnaud
    Ntshalintshali, Nyasatu E.
    Hsiang, Michelle S.
    Gosling, Roland D.
    MALARIA JOURNAL, 2014, 13
  • [36] Multisource Remote Sensing Data Visualization Using Machine Learning
    Plajer, Ioana Cristina
    Baicoianu, Alexandra
    Majercsik, Luciana
    Ivanovici, Mihai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 12
  • [37] Investigation on Data Fusion of Multisource Spectral Data for Rice Leaf Diseases Identification Using Machine Learning Methods
    Feng, Lei
    Wu, Baohua
    Zhu, Susu
    Wang, Junmin
    Su, Zhenzhu
    Liu, Fei
    He, Yong
    Zhang, Chu
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [38] Comparing Methods to Adjust for Fine-Scale Population Structure in Rare Variant Analyses
    Marker, Katie M.
    Shemirani, Ruhollah
    Lin, Meng
    Kenny, Eimear E.
    Belbin, Gillian M.
    Gignoux, Christopher R.
    GENETIC EPIDEMIOLOGY, 2022, 46 (07) : 515 - 515
  • [39] Fine-scale mapping in case-control samples using locus scoring and haplotype-sharing methods
    Keith Humphreys
    Mark M Iles
    BMC Genetics, 6
  • [40] Fine-scale mapping in case-control samples using locus scoring and haplotype-sharing methods
    Humphreys, K
    Iles, MM
    BMC GENETICS, 2005, 6 (Suppl 1)