Fine-scale population mapping on Tibetan Plateau using the ensemble machine learning methods and multisource data

被引:1
|
作者
Zhang, Huiming [1 ]
Fu, Jingqiao [1 ]
Li, Feixiang [1 ]
Chen, Qian [1 ]
Ye, Tao [2 ,3 ]
Zhang, Yili [4 ,5 ,6 ]
Yang, Xuchao [1 ]
机构
[1] Zhejiang Univ, Ocean Coll, Zhoushan 316021, Peoples R China
[2] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol E, Beijing 100875, Peoples R China
[3] Beijing Normal Univ, Fac Geog Sci, Beijing 100875, Peoples R China
[4] Chinese Acad Sci, Key Lab Land Surface Pattern & Simulat, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[5] CAS Ctr Excellence Tibetan Plateau Earth Sci, Beijing 100101, Peoples R China
[6] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
关键词
Population spatialization; Ensemble model; Nighttime light; Tibetan Plateau; Location -based services data; NIGHTTIME LIGHT; LAND-COVER; REGION; DEGRADATION;
D O I
10.1016/j.ecolind.2024.112307
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
The Tibetan Plateau, known for its high elevation and sparse population distribution, heavily depends on gridded population data to enhance disaster prevention and management strategies. This study utilizes multi-source physical geographic and socio-economic factors to delineate the population distribution across the plateau. Using data from the seventh National Census in 2020, we apply three individual machine learning methods (Random Forest, GBDT, and XGBoost) and two multi-model ensemble methods (weighted average ensemble and stacking ensemble) to spatialize the population data into a 100-meter grid. The results reveal that the spatialization accuracy of all models exceeds that of the WorldPop dataset. Specifically, the Random Forest model (RMSE = 4061.09, nRMSE = 44.71 %) and the stacking ensemble model (RMSE = 4094.47, nRMSE = 44.26 %) demonstrate the highest accuracy among the individual and ensemble models, respectively. Emphasizing the importance of integrating multi-source big data, Tencent location-based services data emerges as a crucial variable across all models. This study highlights the effectiveness of ensemble models and multi-source big data in improving population mapping accuracy, especially in regions with complex terrains.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Fine-scale distribution of treeline trees and the nurse plant facilitation on the eastern Tibetan Plateau
    Lyu, Lixin
    Zhang, Qi-Bin
    Deng, Xu
    Makinen, Harri
    ECOLOGICAL INDICATORS, 2016, 66 : 251 - 258
  • [12] Mapping suitability of pasture species using fine-scale soils and rainfall data
    Smith, R. W.
    Webb, M.
    Kidd, D.
    Hannaway, D. B.
    CROP & PASTURE SCIENCE, 2019, 70 (12): : 1175 - 1183
  • [13] Modeling fine-scale residential land price distribution: An experimental study using open data and machine learning
    Zhang, Peng
    Hu, Shougeng
    Li, Weidong
    Zhang, Chuanrong
    Yang, Shengfu
    Qu, Shijin
    APPLIED GEOGRAPHY, 2021, 129
  • [14] Bayesian inference of fine-scale recombination rates using population genomic data
    Wang, Ying
    Rannala, Bruce
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2008, 363 (1512) : 3921 - 3930
  • [15] A data mining approach to fine-scale gene mapping.
    Weir, BS
    Brocklebank, JC
    Conneally, PM
    Ehm, MG
    Gilbert, JR
    Goodnight, JH
    Hassler, WA
    Martin, ER
    Nielsen, DM
    Pericak-Vance, MA
    Rogala, AR
    Roses, AD
    Saunders, AM
    Schmechel, DE
    Slotterbeck, BD
    Vance, JM
    Zaykin, D
    AMERICAN JOURNAL OF HUMAN GENETICS, 1999, 65 (04) : A14 - A14
  • [16] Improving Permafrost Mapping in Southern Tibetan Plateau Using Machine Learning and Rock Glacier Inventory
    Yan, Dezhao
    Feng, Min
    Hu, Zhongyi
    Xu, Jinhao
    Li, Xin
    PERMAFROST AND PERIGLACIAL PROCESSES, 2025,
  • [17] Using IPCAPS to Identify Fine-Scale Population Structure
    Chaichoompu, Kridsadakorn
    Yazew, Fentaw A.
    Tongsima, Sissades
    Shaw, Philip J.
    Sakuntabhai, Anavaj
    Cavadas, Bruno
    Pereira, Luisa
    Van Steen, Kristel
    GENETIC EPIDEMIOLOGY, 2017, 41 (07) : 656 - 656
  • [18] A Hybrid Method for Fine-Scale Wind Field Retrieval Based on Machine Learning and Data Assimilation
    Gao, Hang
    Zhou, Jie
    Chan, Pak-Wai
    Hon, Kai-Kwong
    Li, Jianbing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [19] Multilayer Soil Moisture Mapping at a Regional Scale from Multisource Data via a Machine Learning Method
    Zeng, Linglin
    Hu, Shun
    Xiang, Daxiang
    Zhang, Xiang
    Li, Deren
    Li, Lin
    Zhang, Tingqiang
    REMOTE SENSING, 2019, 11 (03)
  • [20] Lake-area mapping in the Tibetan Plateau: an evaluation of data and methods
    Zhang, Guoqing
    Li, Junli
    Zheng, Guoxiong
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (03) : 742 - 772