Fine-scale population mapping on Tibetan Plateau using the ensemble machine learning methods and multisource data

被引:1
|
作者
Zhang, Huiming [1 ]
Fu, Jingqiao [1 ]
Li, Feixiang [1 ]
Chen, Qian [1 ]
Ye, Tao [2 ,3 ]
Zhang, Yili [4 ,5 ,6 ]
Yang, Xuchao [1 ]
机构
[1] Zhejiang Univ, Ocean Coll, Zhoushan 316021, Peoples R China
[2] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol E, Beijing 100875, Peoples R China
[3] Beijing Normal Univ, Fac Geog Sci, Beijing 100875, Peoples R China
[4] Chinese Acad Sci, Key Lab Land Surface Pattern & Simulat, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[5] CAS Ctr Excellence Tibetan Plateau Earth Sci, Beijing 100101, Peoples R China
[6] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
关键词
Population spatialization; Ensemble model; Nighttime light; Tibetan Plateau; Location -based services data; NIGHTTIME LIGHT; LAND-COVER; REGION; DEGRADATION;
D O I
10.1016/j.ecolind.2024.112307
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
The Tibetan Plateau, known for its high elevation and sparse population distribution, heavily depends on gridded population data to enhance disaster prevention and management strategies. This study utilizes multi-source physical geographic and socio-economic factors to delineate the population distribution across the plateau. Using data from the seventh National Census in 2020, we apply three individual machine learning methods (Random Forest, GBDT, and XGBoost) and two multi-model ensemble methods (weighted average ensemble and stacking ensemble) to spatialize the population data into a 100-meter grid. The results reveal that the spatialization accuracy of all models exceeds that of the WorldPop dataset. Specifically, the Random Forest model (RMSE = 4061.09, nRMSE = 44.71 %) and the stacking ensemble model (RMSE = 4094.47, nRMSE = 44.26 %) demonstrate the highest accuracy among the individual and ensemble models, respectively. Emphasizing the importance of integrating multi-source big data, Tencent location-based services data emerges as a crucial variable across all models. This study highlights the effectiveness of ensemble models and multi-source big data in improving population mapping accuracy, especially in regions with complex terrains.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Fine-scale genetic mapping using independent component analysis
    Dawy, Zaher
    Sarkis, Michel
    Hagenauer, Joachim
    Mueller, Jakob C.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2008, 5 (03) : 448 - 460
  • [22] Fine-scale mapping using Hardy-Weinberg disequilibrium
    Jiang, R
    Dong, J
    Wang, D
    Sun, FZ
    ANNALS OF HUMAN GENETICS, 2001, 65 : 207 - 219
  • [23] Using machine learning to deduce fine-scale behavior of jellyfish (Chrysaora fuscescens) in Monterey Bay
    Fannjiang, C.
    Kakani, K.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2019, 59 : E65 - E65
  • [24] Mapping Population Distribution Based on XGBoost Using Multisource Data
    Zhao, Xin
    Xia, Nan
    Xu, Yunyun
    Huang, Xuefeng
    Li, Manchun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 11567 - 11580
  • [25] Fine-scale population genetic structure in western France: consequences in gene mapping
    Dina, Christian
    Giemza, Joanna
    Karakachoff, Matilde
    Simonet, Floriane
    Rouault, Karen
    Charpentier, Eric
    Lecointe, Simon
    Lindenbaum, Pierre
    Violleau, Jade
    Ferec, Claude
    Le Marec, Herve
    Chatel, Stephanie
    Schott, Jean-Jacques
    Genin, Emmanuelle
    Redon, Richard
    ACTA PHYSIOLOGICA, 2016, 217 : 123 - 123
  • [26] Coarse-scale PDEs from fine-scale observations via machine learning
    Lee, Seungjoon
    Kooshkbaghi, Mahdi
    Spiliotis, Konstantinos
    Siettos, Constantinos I.
    Kevrekidis, Ioannis G.
    CHAOS, 2020, 30 (01)
  • [27] Identifying the population susceptible to rubella in Japan, 2020: Fine-scale risk mapping
    Kinoshita, Ryo
    Arai, Satoru
    Suzuki, Motoi
    Nishiura, Hiroshi
    JOURNAL OF INFECTION AND PUBLIC HEALTH, 2024, 17 (06) : 947 - 955
  • [28] Fine-scale mapping of quantitative traits loci by interval mapping in human loci in population.
    Xiong, M
    Zhao, J
    Jin, L
    Boerwinkle, E
    AMERICAN JOURNAL OF HUMAN GENETICS, 2000, 67 (04) : 24 - 24
  • [29] An Improved Method for Soil Moisture Monitoring With Ensemble Learning Methods Over the Tibetan Plateau
    He, Lei
    Cheng, Yuan
    Li, Yuxia
    Li, Fan
    Fan, Kunlong
    Li, Yuzhen
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 2833 - 2844
  • [30] Fine-Scale Dasymetric Population Mapping with Mobile Phone and Building Use Data Based on Grid Voronoi Method
    Peng, Zhenghong
    Wang, Ru
    Liu, Lingbo
    Wu, Hao
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (06)