MFCC-CNN: A patient-independent seizure prediction model

被引:1
|
作者
Zhang, Fan [1 ,2 ]
Zhang, Boyan [3 ]
Guo, Siyuan [2 ]
Zhang, Xinhong [3 ]
机构
[1] Henan Univ, Huaihe Hosp, Radiol Dept, Kaifeng 475004, Peoples R China
[2] Henan Univ, Sch Comp & Informat Engn, Kaifeng 475004, Peoples R China
[3] Henan Univ, Sch Software, Kaifeng 475004, Peoples R China
关键词
Seizure prediction; Electroencephalogram; Meir frequency cepstrum coefficient; Convolutional neural network; IDENTIFICATION; DELIVERY; EPILEPSY; SYSTEM;
D O I
10.1007/s10072-024-07718-y
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BackgroundAutomatic prediction of seizures is a major goal in the field of epilepsy. However, the high variability of Electroencephalogram (EEG) signals in different patients limits the use of prediction models in clinical applications.MethodsThis paper proposes a patient-independent seizure prediction model, named MFCC-CNN, to improve the generalization ability. MFCC-CNN model introduces Mel-Frequency Cepstrum Coefficients (MFCC) features and Linear Predictive Cepstral Coefficients (LPCC) features concentrated in the low frequency region, which contains more detailed information. Convolutional neural network (CNN) is used to construct a seizure prediction model.ResultsExperimental results showed that the proposed model obtained accuracy of 96%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, sensitivity of 92%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, specificity of 84%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and F1-score of 85%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} for 24 cases in CNHB-MIT dataset. The overall performance of MFCC-CNN model is better than the other models.ConclusionMFCC-CNN model does not need to be specifically customized for different patients. As a patient-independent seizure prediction model, it has good generalization ability.
引用
收藏
页码:5897 / 5908
页数:12
相关论文
共 50 条
  • [41] Hybrid Attention-Based Transformers-CNN Model for Seizure Prediction Through Electronic Health Records
    Ramesh, Janjhyam Venkata Naga
    Misba, M.
    Balaji, S.
    Kumar, K. Kiran
    Muniyandy, Elangovan
    El-Ebiary, Yousef A. Baker
    Bala, B. Kiran
    Elbasir, Radwan Abdulhadi . M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2025, 16 (02) : 1111 - 1120
  • [42] A Novel Prognostic Model Using Chaotic CNN with Hybridized Spoofing for Enhancing Diagnostic Accuracy in Epileptic Seizure Prediction
    Palanisamy, Preethi
    Urooj, Shabana
    Arunachalam, Rajesh
    Lay-Ekuakille, Aime
    DIAGNOSTICS, 2023, 13 (21)
  • [43] Simple model for the prediction of seizure durations
    Salners, Tyler
    Dahmen, Karin A.
    Beggs, John
    PHYSICAL REVIEW E, 2024, 110 (01)
  • [44] Patient-independent human induced pluripotent stem cell model: A new tool for rapid determination of genetic variant pathogenicity in long QT syndrome
    Chavali, Nikhil V.
    Kryshtal, Dmytro O.
    Parikh, Shan S.
    Wang, Lili
    Glazer, Andrew M.
    Blackwell, Daniel J.
    Kroncke, Brett M.
    Shoemaker, Moore Benjamin
    Knollmann, Bjorn C.
    HEART RHYTHM, 2019, 16 (11) : 1686 - 1695
  • [45] Epileptic Seizure Prediction using Stacked CNN-BiLSTM: A Novel Approach
    Quadri Z.F.
    Akhoon M.S.
    Loan S.A.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (11): : 1 - 9
  • [46] Conversion of left ventricular endocardial positions from patient-independent co-ordinates into biplane fluoroscopic projections
    Potse, M
    Hoekema, R
    Linnenbank, AC
    SippensGroenewegen, A
    Strackee, J
    de Bakker, JMT
    Grimbergen, CA
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2002, 40 (01) : 41 - 46
  • [47] Epileptic Seizure Prediction over EEG Data using Hybrid CNN-SVM Model with Edge Computing Services
    Agarwal, Punjal
    Wang, Hwang-Cheng
    Srinivasan, Kathiravan
    22ND INTERNATIONAL CONFERENCE ON CIRCUITS, SYSTEMS, COMMUNICATIONS AND COMPUTERS (CSCC 2018), 2018, 210
  • [48] Patient-independent, MHD-robust R-peak detection for retrospective gating in cardiac MRI imaging
    Ganassin, Sara
    Galli, Alessandra
    Ouzounov, Sotir
    Narduzzi, Claudio
    PHYSIOLOGICAL MEASUREMENT, 2024, 45 (04)
  • [49] Conversion of left ventricular endocardial positions from patient-independent co-ordinates into biplane fluoroscopic projections
    M. Potse
    R. Hoekema
    A. C. Linnenbank
    A. SippensGroenewegen
    J. Strackee
    J. M. T. de Bakker
    C. A. Grimbergen
    Medical and Biological Engineering and Computing, 2002, 40 : 41 - 46
  • [50] The acoustic hood: a patient-independent device improving acoustic noise protection during neonatal magnetic resonance imaging
    Nordell, Anders
    Lundh, Marcus
    Horsch, Sandra
    Hallberg, Boubou
    Aden, Ulrika
    Nordell, Bo
    Blennow, Mats
    ACTA PAEDIATRICA, 2009, 98 (08) : 1278 - 1283