MFCC-CNN: A patient-independent seizure prediction model

被引:1
|
作者
Zhang, Fan [1 ,2 ]
Zhang, Boyan [3 ]
Guo, Siyuan [2 ]
Zhang, Xinhong [3 ]
机构
[1] Henan Univ, Huaihe Hosp, Radiol Dept, Kaifeng 475004, Peoples R China
[2] Henan Univ, Sch Comp & Informat Engn, Kaifeng 475004, Peoples R China
[3] Henan Univ, Sch Software, Kaifeng 475004, Peoples R China
关键词
Seizure prediction; Electroencephalogram; Meir frequency cepstrum coefficient; Convolutional neural network; IDENTIFICATION; DELIVERY; EPILEPSY; SYSTEM;
D O I
10.1007/s10072-024-07718-y
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BackgroundAutomatic prediction of seizures is a major goal in the field of epilepsy. However, the high variability of Electroencephalogram (EEG) signals in different patients limits the use of prediction models in clinical applications.MethodsThis paper proposes a patient-independent seizure prediction model, named MFCC-CNN, to improve the generalization ability. MFCC-CNN model introduces Mel-Frequency Cepstrum Coefficients (MFCC) features and Linear Predictive Cepstral Coefficients (LPCC) features concentrated in the low frequency region, which contains more detailed information. Convolutional neural network (CNN) is used to construct a seizure prediction model.ResultsExperimental results showed that the proposed model obtained accuracy of 96%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, sensitivity of 92%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, specificity of 84%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and F1-score of 85%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} for 24 cases in CNHB-MIT dataset. The overall performance of MFCC-CNN model is better than the other models.ConclusionMFCC-CNN model does not need to be specifically customized for different patients. As a patient-independent seizure prediction model, it has good generalization ability.
引用
收藏
页码:5897 / 5908
页数:12
相关论文
共 50 条
  • [31] Causative factors of fracture nonunion: the proportions of mechanical, biological, patient-dependent, and patient-independent factors
    Niikura, Takahiro
    Lee, Sang Yang
    Sakai, Yoshitada
    Nishida, Kotaro
    Kuroda, Ryosuke
    Kurosaka, Masahiro
    JOURNAL OF ORTHOPAEDIC SCIENCE, 2014, 19 (01) : 120 - 124
  • [32] A CNN Model for Gas Pipeline Leakage Detection Based on MFCC Feature Extraction
    Sun, Chen
    Wan, Yujie
    Zhu, Peizhi
    Lin, Fanqiang
    PROCEEDINGS OF 2023 THE 12TH INTERNATIONAL CONFERENCE ON NETWORKS, COMMUNICATION AND COMPUTING, ICNCC 2023, 2023, : 288 - 293
  • [33] Patient and caregiver perspectives on seizure prediction
    Arthurs, Susan
    Zaveri, Hitten P.
    Frei, Mark G.
    Osorio, Ivan
    EPILEPSY & BEHAVIOR, 2010, 19 (03) : 474 - 477
  • [34] Patient-centered and Patient-independent Technologies in Acute Neurological Injury and the Art of Making Useful Medical Contributions
    Ravindra, Neal G.
    Sheth, Kevin
    YALE JOURNAL OF BIOLOGY AND MEDICINE, 2018, 91 (03): : 345 - 351
  • [35] ScatterFormer: Locally-Invariant Scattering Transformer for Patient-Independent Multispectral Detection of Epileptiform Discharges
    Zheng, Ruizhe
    Li, Jun
    Wang, Yi
    Luo, Tian
    Yu, Yuguo
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 148 - 158
  • [36] An Epileptic Seizure Prediction Method Based on CBAM-3D CNN-LSTM Model
    Lu, Xiang
    Wen, Anhao
    Sun, Lei
    Wang, Hao
    Guo, Yinjing
    Ren, Yande
    IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE, 2023, 11 : 417 - 423
  • [37] EEG-based seizure prediction via Transformer guided CNN
    Li, Chang
    Huang, Xiaoyang
    Song, Rencheng
    Qian, Ruobing
    Liu, Xiang
    Chen, Xun
    MEASUREMENT, 2022, 203
  • [38] EEG-based seizure prediction via Transformer guided CNN
    Li, Chang
    Huang, Xiaoyang
    Song, Rencheng
    Qian, Ruobing
    Liu, Xiang
    Chen, Xun
    Measurement: Journal of the International Measurement Confederation, 2022, 203
  • [39] A deep learning model for depression detection based on MFCC and CNN generated spectrogram features
    Das, Arnab Kumar
    Naskar, Ruchira
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 90
  • [40] Epileptic Seizure Detection and Prediction for Patient Support
    Khan, Gul Hameed
    Khan, Nadeem Ahmad
    Saadeh, Wala
    Bin Altaf, Muahammad Awais
    BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, BIOSTEC 2023, 2024, 2079 : 40 - 59