MFCC-CNN: A patient-independent seizure prediction model

被引:1
|
作者
Zhang, Fan [1 ,2 ]
Zhang, Boyan [3 ]
Guo, Siyuan [2 ]
Zhang, Xinhong [3 ]
机构
[1] Henan Univ, Huaihe Hosp, Radiol Dept, Kaifeng 475004, Peoples R China
[2] Henan Univ, Sch Comp & Informat Engn, Kaifeng 475004, Peoples R China
[3] Henan Univ, Sch Software, Kaifeng 475004, Peoples R China
关键词
Seizure prediction; Electroencephalogram; Meir frequency cepstrum coefficient; Convolutional neural network; IDENTIFICATION; DELIVERY; EPILEPSY; SYSTEM;
D O I
10.1007/s10072-024-07718-y
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BackgroundAutomatic prediction of seizures is a major goal in the field of epilepsy. However, the high variability of Electroencephalogram (EEG) signals in different patients limits the use of prediction models in clinical applications.MethodsThis paper proposes a patient-independent seizure prediction model, named MFCC-CNN, to improve the generalization ability. MFCC-CNN model introduces Mel-Frequency Cepstrum Coefficients (MFCC) features and Linear Predictive Cepstral Coefficients (LPCC) features concentrated in the low frequency region, which contains more detailed information. Convolutional neural network (CNN) is used to construct a seizure prediction model.ResultsExperimental results showed that the proposed model obtained accuracy of 96%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, sensitivity of 92%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, specificity of 84%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and F1-score of 85%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} for 24 cases in CNHB-MIT dataset. The overall performance of MFCC-CNN model is better than the other models.ConclusionMFCC-CNN model does not need to be specifically customized for different patients. As a patient-independent seizure prediction model, it has good generalization ability.
引用
收藏
页码:5897 / 5908
页数:12
相关论文
共 50 条
  • [21] Improved Patient-Independent Seizure Detection Using Hybrid Feature Extraction Approach with Atomic Function-Based Wavelets
    Durgesh Nandini
    Jyoti Yadav
    Asha Rani
    Vijander Singh
    Oleg V. Kravchenko
    Neeru Rathee
    Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2023, 47 : 1667 - 1688
  • [23] Improved Patient-Independent System for Detection of Electrical Onset of Seizures
    Sridevi, Veerasingam
    Reddy, Machireddy Ramasubba
    Srinivasan, Kannan
    Radhakrishnan, Kurupath
    Rathore, Chaturbhuj
    Nayakk, Dinesh S.
    JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2019, 36 (01) : 14 - 24
  • [24] Patient-independent iPS cells and modeling long QT syndrome
    Feng, Li
    Kamp, Timothy J.
    HEART RHYTHM, 2019, 16 (11) : 1696 - 1697
  • [25] Patient-Independent Seizure Detection Based on Channel-Perturbation Convolutional Neural Network and Bidirectional Long Short-Term Memory
    Liu, Guoyang
    Tian, Lan
    Zhou, Weidong
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2022, 32 (06)
  • [26] Feature separation and adversarial training for the patient-independent detection of epileptic seizures
    Yang, Yong
    Li, Feng
    Qin, Xiaolin
    Wen, Han
    Lin, Xiaoguang
    Huang, Dong
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2023, 17
  • [27] Patient specific channel optimization using entropy and CNN deep learning for epileptic seizure prediction
    Cherouati, Brahim
    Senouci, Mohamed
    PRZEGLAD ELEKTROTECHNICZNY, 2023, 99 (07): : 106 - 110
  • [28] Assessment of Patient-independent intrinsic error for a noninvasive frame for fractionated stereotactic radiotherapy
    Miranpuri, AS
    Tomé, WA
    Paliwal, BR
    Kesslering, C
    Mehta, MP
    INTERNATIONAL JOURNAL OF CANCER, 2001, 96 (05) : 320 - 325
  • [29] Patient-independent variables affecting the assessment of aspirin responsiveness by serum thromboxane measurement
    Petrucci, Giovanna
    Rizzi, Alessandro
    Cavalca, Viviana
    Habib, Aida
    Pitocco, Dario
    Veglia, Fabrizio
    Ranalli, Paola
    Zaccardi, Francesco
    Pagliaccia, Francesca
    Tremoli, Elena
    Patrono, Carlo
    Rocca, Bianca
    THROMBOSIS AND HAEMOSTASIS, 2016, 116 (05) : 891 - 896
  • [30] A GENERALIZABLE MODEL FOR SEIZURE PREDICTION BASED ON DEEP LEARNING USING CNN-LSTM ARCHITECTURE
    Shahbazi, Mohamad
    Aghajan, Hamid
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 469 - 473