MFCC-CNN: A patient-independent seizure prediction model

被引:1
|
作者
Zhang, Fan [1 ,2 ]
Zhang, Boyan [3 ]
Guo, Siyuan [2 ]
Zhang, Xinhong [3 ]
机构
[1] Henan Univ, Huaihe Hosp, Radiol Dept, Kaifeng 475004, Peoples R China
[2] Henan Univ, Sch Comp & Informat Engn, Kaifeng 475004, Peoples R China
[3] Henan Univ, Sch Software, Kaifeng 475004, Peoples R China
关键词
Seizure prediction; Electroencephalogram; Meir frequency cepstrum coefficient; Convolutional neural network; IDENTIFICATION; DELIVERY; EPILEPSY; SYSTEM;
D O I
10.1007/s10072-024-07718-y
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BackgroundAutomatic prediction of seizures is a major goal in the field of epilepsy. However, the high variability of Electroencephalogram (EEG) signals in different patients limits the use of prediction models in clinical applications.MethodsThis paper proposes a patient-independent seizure prediction model, named MFCC-CNN, to improve the generalization ability. MFCC-CNN model introduces Mel-Frequency Cepstrum Coefficients (MFCC) features and Linear Predictive Cepstral Coefficients (LPCC) features concentrated in the low frequency region, which contains more detailed information. Convolutional neural network (CNN) is used to construct a seizure prediction model.ResultsExperimental results showed that the proposed model obtained accuracy of 96%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, sensitivity of 92%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, specificity of 84%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and F1-score of 85%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} for 24 cases in CNHB-MIT dataset. The overall performance of MFCC-CNN model is better than the other models.ConclusionMFCC-CNN model does not need to be specifically customized for different patients. As a patient-independent seizure prediction model, it has good generalization ability.
引用
收藏
页码:5897 / 5908
页数:12
相关论文
共 50 条
  • [1] An Efficient Hybrid Model for Patient-Independent Seizure Prediction Using Deep Learning
    Halawa, Rowan Ihab
    Youssef, Sherin M.
    Elagamy, Mazen Nabil
    APPLIED SCIENCES-BASEL, 2022, 12 (11):
  • [2] Online Test-Time Adaptation for Patient-Independent Seizure Prediction
    Mao, Tingting
    Li, Chang
    Zhao, Yuchang
    Song, Rencheng
    Chen, Xun
    IEEE SENSORS JOURNAL, 2023, 23 (19) : 23133 - 23144
  • [3] Patient-independent seizure detection based on long-term iEEG and a novel lightweight CNN
    Si, Xiaopeng
    Yang, Zhuobin
    Zhang, Xingjian
    Sun, Yulin
    Jin, Weipeng
    Wang, Le
    Yin, Shaoya
    Ming, Dong
    JOURNAL OF NEURAL ENGINEERING, 2023, 20 (01)
  • [4] PPi: Pretraining Brain Signal Model for Patient-independent Seizure Detection
    Yuan, Zhizhang
    Zhang, Daoze
    Yang, Yang
    Chen, Junru
    Li, Yafeng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [5] A Binaural MFCC-CNN Sound Quality Model of High-Speed Train
    Ruan, Peilin
    Zheng, Xu
    Qiu, Yi
    Hao, Zhiyong
    APPLIED SCIENCES-BASEL, 2022, 12 (23):
  • [6] Deep Learning for Patient-Independent Epileptic Seizure Prediction Using Scalp EEG Signals
    Dissanayake, Theekshana
    Fernando, Tharindu
    Denman, Simon
    Sridharan, Sridha
    Fookes, Clinton
    IEEE SENSORS JOURNAL, 2021, 21 (07) : 9377 - 9388
  • [7] Patient-independent epileptic seizure detection by stable feature selection
    Abou-Abbas, Lina
    Henni, Khadidja
    Jemal, Imene
    Mitiche, Amar
    Mezghani, Neila
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 232
  • [8] Bridging the gap between patient-specific and patient-independent seizure prediction via knowledge distillation
    Wu, Di
    Yang, Jie
    Sawan, Mohamad
    JOURNAL OF NEURAL ENGINEERING, 2022, 19 (03)
  • [9] Seizure-Cluster-Inception CNN (SciCNN): A Patient-Independent Epilepsy Tracking SoC With 0-Shot-Retraining
    Tsai, Chne-Wuen
    Jiang, Rucheng
    Zhang, Lian
    Zhang, Miaolin
    Yoo, Jerald
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2023, 17 (06) : 1202 - 1213
  • [10] Six-Center Assessment of CNN-Transformer with Belief Matching Loss for Patient-Independent Seizure Detection in EEG
    Peh, Wei Yan
    Thangavel, Prasanth
    Yao, Yuanyuan
    Thomas, John
    Tan, Yee-Leng
    Dauwels, Justin
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2023, 33 (03)