SOME RESULTS ON THE GLOBAL TRIPLE ROMAN DOMINATION IN GRAPHS

被引:0
|
作者
Hao, Guoliang [1 ]
Xie, Zhihong [2 ]
Chen, Xiaodan [3 ,4 ]
Sheikholeslami, Seyed mahmoud [5 ]
机构
[1] Heze Univ, Sch Math & Stat, Heze 274015, Peoples R China
[2] Heze Univ, Sch Business, Heze 274015, Peoples R China
[3] Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
[4] Guangxi Univ, Ctr Appl Math Guangxi, Nanning 530004, Guangxi, Peoples R China
[5] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
基金
中国国家自然科学基金;
关键词
global triple Roman domination; triple Roman domination; complement; characterization;
D O I
10.7151/dmgt.2558
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A triple Roman dominating function (TRDF) on a graph G with vertex with f (v) < 3, E set V is a function f : V-+ {0, 1, 2, 3, 4} } such that for any vertex v E V x is an element of N(v)boolean OR{v} is an element of N(v) boolean OR{ v } f(x) > |{x E N(v) : f(x) > 1}| }| + 3, where N(v) is the open neighborhood of v. The weight of a TRDF f is the value E v is an element of V is an element of V f (v). A global triple Roman dominating function (GTRDF) on G is a TRDF on both G and its complement. The minimum weight of a GTRDF on G is called the global triple Roman domination number gamma g[3R] (G) of G. We first show that for any tree T on n > 5 vertices, gamma g[3R] (T) < 7n/4 and characterize all extremal trees. We also show that for any graph G on n vertices, gamma g[3R] (G) not equal 3n - 3, and further characterize all graphs G with gamma g[3R] (G) = 3n - k for each k E {4, 5,6, 7}, }, which improves the results given by Nahani Pour et al. (2022).
引用
收藏
页数:30
相关论文
共 50 条
  • [41] Efficient algorithms for Roman domination on some classes of graphs
    Liedloff, Mathieu
    Kloks, Ton
    Liu, Jiping
    Peng, Sheng-Lung
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (18) : 3400 - 3415
  • [42] Roman domination in graphs
    University of Victoria, Victoria, BC, V8W 3P4, Canada
    不详
    不详
    1600, 11-22 (March 6, 2004):
  • [43] Roman domination in graphs
    Cockayne, EJ
    Dreyer, PA
    Hedetniemi, SM
    Hedetniemi, ST
    DISCRETE MATHEMATICS, 2004, 278 (1-3) : 11 - 22
  • [44] Roman and inverse Roman domination in graphs
    Zaman, Zulfiqar
    Kumar, M. Kamal
    Ahmad, Saad Salman
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2018, 24 (03) : 142 - 150
  • [45] Some Remarks On Global Total Domination In Graphs
    Akhbari, Mohammad Hadi
    Eslahchi, Changiz
    Rad, Nader Jafari
    Hasni, Roslan
    APPLIED MATHEMATICS E-NOTES, 2015, 15 : 22 - 28
  • [46] Complexity of Roman {2}-domination and the double Roman domination in graphs
    Padamutham, Chakradhar
    Palagiri, Venkata Subba Reddy
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 1081 - 1086
  • [47] Perfect Domination, Roman Domination and Perfect Roman Domination in Lexicographic Product Graphs
    Cabrera Martinez, A.
    Garcia-Gomez, C.
    Rodriguez-Velazquez, J. A.
    FUNDAMENTA INFORMATICAE, 2022, 185 (03) : 201 - 220
  • [48] SOME RESULTS ON DOMINATION NUMBER OF PRODUCTS OF GRAPHS
    SHAN ERFANG\ SUN LIANG AND KANG LIYING
    AppliedMathematics:AJournalofChineseUniversities, 1998, (01) : 105 - 110
  • [49] Some complexity results on semipaired domination in graphs
    Tripathi, Vikash
    Pandey, Arti
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024,
  • [50] Some results on domination number of products of graphs
    Shan E.
    Sun L.
    Kang L.
    Applied Mathematics-A Journal of Chinese Universities, 1998, 13 (1) : 103 - 108