SOME RESULTS ON THE GLOBAL TRIPLE ROMAN DOMINATION IN GRAPHS

被引:0
|
作者
Hao, Guoliang [1 ]
Xie, Zhihong [2 ]
Chen, Xiaodan [3 ,4 ]
Sheikholeslami, Seyed mahmoud [5 ]
机构
[1] Heze Univ, Sch Math & Stat, Heze 274015, Peoples R China
[2] Heze Univ, Sch Business, Heze 274015, Peoples R China
[3] Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
[4] Guangxi Univ, Ctr Appl Math Guangxi, Nanning 530004, Guangxi, Peoples R China
[5] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
基金
中国国家自然科学基金;
关键词
global triple Roman domination; triple Roman domination; complement; characterization;
D O I
10.7151/dmgt.2558
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A triple Roman dominating function (TRDF) on a graph G with vertex with f (v) < 3, E set V is a function f : V-+ {0, 1, 2, 3, 4} } such that for any vertex v E V x is an element of N(v)boolean OR{v} is an element of N(v) boolean OR{ v } f(x) > |{x E N(v) : f(x) > 1}| }| + 3, where N(v) is the open neighborhood of v. The weight of a TRDF f is the value E v is an element of V is an element of V f (v). A global triple Roman dominating function (GTRDF) on G is a TRDF on both G and its complement. The minimum weight of a GTRDF on G is called the global triple Roman domination number gamma g[3R] (G) of G. We first show that for any tree T on n > 5 vertices, gamma g[3R] (T) < 7n/4 and characterize all extremal trees. We also show that for any graph G on n vertices, gamma g[3R] (G) not equal 3n - 3, and further characterize all graphs G with gamma g[3R] (G) = 3n - k for each k E {4, 5,6, 7}, }, which improves the results given by Nahani Pour et al. (2022).
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Further Results on the [k]-Roman Domination in Graphs
    Juan Carlos Valenzuela-Tripodoro
    Maria Antonia Mateos-Camacho
    Martin Cera Lopez
    Maria Pilar Álvarez-Ruiz
    Bulletin of the Iranian Mathematical Society, 2024, 50
  • [32] SOME PROGRESS ON THE DOUBLE ROMAN DOMINATION IN GRAPHS
    Rad, Nader Jafari
    Rahbani, Hadi
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 41 - 53
  • [33] Some notes on the Roman domination number and Italian domination number in graphs
    Hajibaba, Maryam
    Rad, Nader Jafari
    1ST INTERNATIONAL CONFERENCE ON APPLIED & INDUSTRIAL MATHEMATICS AND STATISTICS 2017 (ICOAIMS 2017), 2017, 890
  • [34] Bounds on the Global Double Roman Domination Number in Graphs
    Hao, Guoliang
    Wei, Shouliu
    Sheikholeslami, Seyed Mahmoud
    Chen, Xiaodan
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (02) : 539 - 554
  • [35] Some results in step domination of graphs
    Caro, Y
    Lev, A
    Roditty, Y
    ARS COMBINATORIA, 2003, 68 : 105 - 114
  • [36] Further results on outer independent triple Roman domination
    Najafi, F.
    Amjadi, J.
    Sheikholeslami, S. M.
    Chellali, M.
    Kosari, S.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2025, 22 (01) : 94 - 105
  • [37] FURTHER RESULTS ON THE INDEPENDENT ROMAN DOMINATION NUMBER OF GRAPHS
    Cabrera Martinez, Abel
    Hernandez Mira, Frank A.
    QUAESTIONES MATHEMATICAE, 2023, 46 (02) : 347 - 357
  • [38] Algorithmic results for weak Roman domination problem in graphs
    Paul, Kaustav
    Sharma, Ankit
    Pandey, Arti
    DISCRETE APPLIED MATHEMATICS, 2024, 359 : 278 - 289
  • [39] Algorithm and hardness results in double Roman domination of graphs
    Poureidi, Abolfazl
    THEORETICAL COMPUTER SCIENCE, 2022, 911 : 70 - 79
  • [40] Hardness and Approximation Results of Roman {3}-Domination in Graphs
    Goyal, Pooja
    Panda, B. S.
    COMPUTING AND COMBINATORICS (COCOON 2021), 2021, 13025 : 101 - 111