SOME RESULTS ON THE GLOBAL TRIPLE ROMAN DOMINATION IN GRAPHS

被引:0
|
作者
Hao, Guoliang [1 ]
Xie, Zhihong [2 ]
Chen, Xiaodan [3 ,4 ]
Sheikholeslami, Seyed mahmoud [5 ]
机构
[1] Heze Univ, Sch Math & Stat, Heze 274015, Peoples R China
[2] Heze Univ, Sch Business, Heze 274015, Peoples R China
[3] Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
[4] Guangxi Univ, Ctr Appl Math Guangxi, Nanning 530004, Guangxi, Peoples R China
[5] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
基金
中国国家自然科学基金;
关键词
global triple Roman domination; triple Roman domination; complement; characterization;
D O I
10.7151/dmgt.2558
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A triple Roman dominating function (TRDF) on a graph G with vertex with f (v) < 3, E set V is a function f : V-+ {0, 1, 2, 3, 4} } such that for any vertex v E V x is an element of N(v)boolean OR{v} is an element of N(v) boolean OR{ v } f(x) > |{x E N(v) : f(x) > 1}| }| + 3, where N(v) is the open neighborhood of v. The weight of a TRDF f is the value E v is an element of V is an element of V f (v). A global triple Roman dominating function (GTRDF) on G is a TRDF on both G and its complement. The minimum weight of a GTRDF on G is called the global triple Roman domination number gamma g[3R] (G) of G. We first show that for any tree T on n > 5 vertices, gamma g[3R] (T) < 7n/4 and characterize all extremal trees. We also show that for any graph G on n vertices, gamma g[3R] (G) not equal 3n - 3, and further characterize all graphs G with gamma g[3R] (G) = 3n - k for each k E {4, 5,6, 7}, }, which improves the results given by Nahani Pour et al. (2022).
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Further Results on the [k]-Roman Domination in Graphs
    Valenzuela-Tripodoro, Juan Carlos
    Mateos-Camacho, Maria Antonia
    Lopez, Martin Cera
    Alvarez-Ruiz, Maria Pilar
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2024, 50 (02)
  • [22] On the Roman domination problem of some Johnson graphs
    Zec, Tatjana
    FILOMAT, 2023, 37 (07) : 2067 - 2075
  • [23] On Roman domination stability in some simple graphs
    Amraee, Mehdi
    Maghasedi, Mohammad
    Italian Journal of Pure and Applied Mathematics, 2020, 44 : 682 - 686
  • [24] New results on quadruple Roman domination in graphs
    Amjadi, J.
    Khalili, N.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (02)
  • [25] Further Results on the Total Roman Domination in Graphs
    Cabrera Martinez, Abel
    Cabrera Garcia, Suitberto
    Carrion Garcia, Andres
    MATHEMATICS, 2020, 8 (03)
  • [26] SOME PROGRESS ON THE MIXED ROMAN DOMINATION IN GRAPHS
    Ahangar, Hossein Abdollahzadeh
    Amjadi, Jafar
    Chellali, Mustapha
    Kosari, Saeed
    Samodivkin, Vladimir
    Sheikholeslami, Seyed Mahmoud
    RAIRO-OPERATIONS RESEARCH, 2021, 55 : S1411 - S1423
  • [27] Some progress on the mixed roman domination in graphs
    Ahangar, Hossein Abdollahzadeh
    Amjadi, Jafar
    Chellali, Mustapha
    Kosari, Saeed
    Samodivkin, Vladimir
    Sheikholeslami, Seyed Mahmoud
    RAIRO - Operations Research, 2021, 55
  • [28] FURTHER RESULTS ON THE DOUBLE ROMAN DOMINATION IN GRAPHS
    Omar, A.
    Bouchou, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (02): : 421 - 430
  • [29] Algorithmic results on double Roman domination in graphs
    Banerjee, S.
    Henning, Michael A.
    Pradhan, D.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (01) : 90 - 114
  • [30] Algorithmic results on double Roman domination in graphs
    S. Banerjee
    Michael A. Henning
    D. Pradhan
    Journal of Combinatorial Optimization, 2020, 39 : 90 - 114