SOME RESULTS ON THE GLOBAL TRIPLE ROMAN DOMINATION IN GRAPHS

被引:0
|
作者
Hao, Guoliang [1 ]
Xie, Zhihong [2 ]
Chen, Xiaodan [3 ,4 ]
Sheikholeslami, Seyed mahmoud [5 ]
机构
[1] Heze Univ, Sch Math & Stat, Heze 274015, Peoples R China
[2] Heze Univ, Sch Business, Heze 274015, Peoples R China
[3] Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
[4] Guangxi Univ, Ctr Appl Math Guangxi, Nanning 530004, Guangxi, Peoples R China
[5] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
基金
中国国家自然科学基金;
关键词
global triple Roman domination; triple Roman domination; complement; characterization;
D O I
10.7151/dmgt.2558
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A triple Roman dominating function (TRDF) on a graph G with vertex with f (v) < 3, E set V is a function f : V-+ {0, 1, 2, 3, 4} } such that for any vertex v E V x is an element of N(v)boolean OR{v} is an element of N(v) boolean OR{ v } f(x) > |{x E N(v) : f(x) > 1}| }| + 3, where N(v) is the open neighborhood of v. The weight of a TRDF f is the value E v is an element of V is an element of V f (v). A global triple Roman dominating function (GTRDF) on G is a TRDF on both G and its complement. The minimum weight of a GTRDF on G is called the global triple Roman domination number gamma g[3R] (G) of G. We first show that for any tree T on n > 5 vertices, gamma g[3R] (T) < 7n/4 and characterize all extremal trees. We also show that for any graph G on n vertices, gamma g[3R] (G) not equal 3n - 3, and further characterize all graphs G with gamma g[3R] (G) = 3n - k for each k E {4, 5,6, 7}, }, which improves the results given by Nahani Pour et al. (2022).
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Hardness results of global roman domination in graphs
    Panda, B. S.
    Goyal, Pooja
    DISCRETE APPLIED MATHEMATICS, 2023, 341 : 337 - 348
  • [2] On The Global Distance Roman Domination of Some Graphs
    Entero, Giovannie
    Espinola, Stephanie
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (01): : 44 - 61
  • [3] Triple Roman domination in graphs
    Ahangar, H. Abdollahzadeh
    Alvarez, M. P.
    Chellali, M.
    Sheikholeslami, S. M.
    Valenzuela-Tripodoro, J. C.
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 391
  • [4] SOME RESULTS ON ROMAN DOMINATION EDGE CRITICAL GRAPHS
    Chellali, Mustapha
    Rad, Nader Jafari
    Volkmann, Lutz
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2012, 9 (02) : 195 - 203
  • [5] Global Roman domination in graphs
    Pushpam, P. Roushini Leely
    Padmapriea, S.
    DISCRETE APPLIED MATHEMATICS, 2016, 200 : 176 - 185
  • [6] On Roman, Global and Restrained Domination in Graphs
    Zverovich, V.
    Poghosyan, A.
    GRAPHS AND COMBINATORICS, 2011, 27 (05) : 755 - 768
  • [7] On the Global Roman Domination Number in Graphs
    Ahangar, H. Abdollahzadeh
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2016, 40 (A3): : 157 - 163
  • [8] Global double Roman domination in graphs
    Shao, Zehui
    Sheikholeslami, S. M.
    Nazari-Moghaddam, S.
    Wang, Shaohui
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2019, 22 (01): : 31 - 44
  • [9] Global restrained Roman domination in graphs
    Alishahi, Morteza
    Mojdeh, Doost Ali
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023,
  • [10] On Roman, Global and Restrained Domination in Graphs
    V. Zverovich
    A. Poghosyan
    Graphs and Combinatorics, 2011, 27 : 755 - 768