Protocol for optimized nasal mucosa sample processing to obtain high-quality scRNA-seq and scATAC-seq data

被引:0
|
作者
Huang, Yaling [1 ]
Wu, Yisha [1 ,2 ,3 ]
Han, Shikai [1 ,2 ,3 ]
Wang, Qiaoling [1 ]
Cong, Guomingxiu [1 ]
Liu, Zhongzhen [1 ]
Guan, Shuyan [1 ]
Huang, Xiaojuan [1 ]
Liu, Ying [1 ]
Yin, Jianhua [1 ,3 ]
Xue, Jinmei [2 ,3 ]
Liu, Chuanyu [1 ]
机构
[1] BGI Res, Shenzhen 518083, Peoples R China
[2] Shanxi Med Univ, Hosp 2, Dept Otolaryngol Head & Neck Surg, Taiyuan 030001, Peoples R China
[3] Shanxi Med Univ, BGI Collaborat Ctr Future Med, Taiyuan 030001, Peoples R China
来源
STAR PROTOCOLS | 2024年 / 5卷 / 03期
关键词
DNA;
D O I
10.1016/j.xpro.2024.103298
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Examining nasal mucosa samples is crucial for nasal cavity disease research and diagnosis. Simultaneously obtaining high-quality data for single-cell transcriptomics (single-cell RNA sequencing [scRNA-seq]) and epigenomics (single-cell assay for transposase-accessible chromatin using sequencing [scATAC-seq]) of nasal mucosa tissues is challenging. Here, we present a protocol for processing human nasal mucosa samples to obtain data for both scRNA-seq and scATAC-seq. We describe steps for extracting human nasal mucosa tissue, mechanical and enzymatic dissociation, lysis of red blood cells, and a viability assay. We then detail procedures for library preparation and quality control.
引用
收藏
页数:16
相关论文
共 46 条
  • [41] High-performance Cartesian Genetic Programming on GPU for the Inference of Gene Regulatory Networks using scRNA-Seq Time-Series Data
    Santana Prachedes, Luciana Nascimento
    Henriques da Silva, Jose Eduardo
    Bernardino, Heder Soares
    de Oliveira, Itamar Leite
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 2063 - 2070
  • [42] Protocol for high-quality single-cell RNA-seq from tissue sections with DRaqL
    Ikeda, Hiroki
    Miyao, Shintaro
    Yamada, Nanami
    Sugimoto, Sumire
    Kimura, Fuminori
    Kurimoto, Kazuki
    STAR PROTOCOLS, 2024, 5 (02):
  • [43] Demultiplexing scRNA-seq data with BFF: decreased cost facilitates high-resolution study of antigen-specific CD8 T cells
    Boggy, Gregory
    Mahyari, Eisa
    Ventura, Abigail
    McElfresh, Gw
    Hansen, Scott
    Picker, Louis
    Bimber, Benjamin
    JOURNAL OF MEDICAL PRIMATOLOGY, 2022, 51 (05) : 314 - 314
  • [44] Creating High-Quality RNA-Seq Reference Data from ATCC's Verified Cell Lines
    Singh, Ajeet P.
    Khairi, Rula
    Reese, Amy L.
    Kirkland, Jade
    Tabron, Corina
    Wax, Noah
    Duncan, James
    Marlow, Robert
    King, Steve
    Fernandes, Ana
    Bagnoli, John
    Benton, Briana
    Jacobs, Jonathan L.
    MOLECULAR THERAPY, 2024, 32 (04) : 774 - 774
  • [45] High-quality faba bean reference transcripts generated using PacBio and Illumina RNA-seq data
    Zhao, Na
    Zhou, Enqiang
    Miao, Yamei
    Xue, Dong
    Wang, Yongqiang
    Wang, Kaihua
    Gu, Chunyan
    Yao, Mengnan
    Zhou, Yao
    Li, Bo
    Wang, Xuejun
    Wei, Libin
    SCIENTIFIC DATA, 2024, 11 (01)
  • [46] Protocol to obtain high-quality single-cell RNA- sequencing data from mouse liver cells using centrifugation
    Wang, Simeng
    STAR PROTOCOLS, 2022, 3 (04):