Protocol for optimized nasal mucosa sample processing to obtain high-quality scRNA-seq and scATAC-seq data

被引:0
|
作者
Huang, Yaling [1 ]
Wu, Yisha [1 ,2 ,3 ]
Han, Shikai [1 ,2 ,3 ]
Wang, Qiaoling [1 ]
Cong, Guomingxiu [1 ]
Liu, Zhongzhen [1 ]
Guan, Shuyan [1 ]
Huang, Xiaojuan [1 ]
Liu, Ying [1 ]
Yin, Jianhua [1 ,3 ]
Xue, Jinmei [2 ,3 ]
Liu, Chuanyu [1 ]
机构
[1] BGI Res, Shenzhen 518083, Peoples R China
[2] Shanxi Med Univ, Hosp 2, Dept Otolaryngol Head & Neck Surg, Taiyuan 030001, Peoples R China
[3] Shanxi Med Univ, BGI Collaborat Ctr Future Med, Taiyuan 030001, Peoples R China
来源
STAR PROTOCOLS | 2024年 / 5卷 / 03期
关键词
DNA;
D O I
10.1016/j.xpro.2024.103298
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Examining nasal mucosa samples is crucial for nasal cavity disease research and diagnosis. Simultaneously obtaining high-quality data for single-cell transcriptomics (single-cell RNA sequencing [scRNA-seq]) and epigenomics (single-cell assay for transposase-accessible chromatin using sequencing [scATAC-seq]) of nasal mucosa tissues is challenging. Here, we present a protocol for processing human nasal mucosa samples to obtain data for both scRNA-seq and scATAC-seq. We describe steps for extracting human nasal mucosa tissue, mechanical and enzymatic dissociation, lysis of red blood cells, and a viability assay. We then detail procedures for library preparation and quality control.
引用
收藏
页数:16
相关论文
共 46 条
  • [31] LSH-GAN enables in-silico generation of cells for small sample high dimensional scRNA-seq data
    Snehalika Lall
    Sumanta Ray
    Sanghamitra Bandyopadhyay
    Communications Biology, 5
  • [32] LSH-GAN enables in-silico generation of cells for small sample high dimensional scRNA-seq data
    Lall, Snehalika
    Ray, Sumanta
    Bandyopadhyay, Sanghamitra
    COMMUNICATIONS BIOLOGY, 2022, 5 (01)
  • [33] Investigation of cell development and tissue structure network based on natural Language processing of scRNA-seq data
    Wei, Suwen
    Lu, Yuer
    Wang, Peng
    Li, Qichao
    Shuai, Jianwei
    Zhao, Qi
    Lin, Hai
    Peng, Yuming
    JOURNAL OF TRANSLATIONAL MEDICINE, 2025, 23 (01)
  • [34] A Feature Extraction Method for scRNA-seq Processing and Its Application on COVID-19 Data Analysis
    Shi, Xiumin
    Wu, Xiyuan
    Qin, Hengyu
    Journal of Beijing Institute of Technology (English Edition), 2022, 31 (03): : 285 - 292
  • [35] cfDiffusion: diffusion-based efficient generation of high quality scRNA-seq data with classifier-free guidance
    Zhang, Tianjiao
    Zhao, Zhongqian
    Ren, Jixiang
    Zhang, Ziheng
    Zhang, Hongfei
    Wang, Guohua
    BRIEFINGS IN BIOINFORMATICS, 2025, 26 (01)
  • [36] A deep learning adversarial autoencoder with dynamic batching displays high performance in denoising and ordering scRNA-seq data
    Ko, Kyung Dae
    Sartorelli, Vittorio
    ISCIENCE, 2024, 27 (03)
  • [37] On the discovery of population-specific state transitions from multi-sample multi-condition scRNA-seq data
    Crowell, H. L.
    Soneson, C.
    Germain, P. -L.
    Calini, D.
    Collin, L.
    Raposo, C.
    Malhotra, D.
    Robinson, M. D.
    GLIA, 2021, 69 : E61 - E61
  • [38] A Method for Data Processing to Obtain High-Quality XCTD Data
    Uchida, Hiroshi
    Shimada, Koji
    Kawano, Takeshi
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2011, 28 (06) : 816 - 826
  • [39] ChIP-Seq: technical considerations for obtaining high-quality data
    Kidder, Benjamin L.
    Hu, Gangqing
    Zhao, Keji
    NATURE IMMUNOLOGY, 2011, 12 (10) : 918 - 922
  • [40] ChIP-Seq: technical considerations for obtaining high-quality data
    Benjamin L Kidder
    Gangqing Hu
    Keji Zhao
    Nature Immunology, 2011, 12 : 918 - 922