Protocol for optimized nasal mucosa sample processing to obtain high-quality scRNA-seq and scATAC-seq data

被引:0
|
作者
Huang, Yaling [1 ]
Wu, Yisha [1 ,2 ,3 ]
Han, Shikai [1 ,2 ,3 ]
Wang, Qiaoling [1 ]
Cong, Guomingxiu [1 ]
Liu, Zhongzhen [1 ]
Guan, Shuyan [1 ]
Huang, Xiaojuan [1 ]
Liu, Ying [1 ]
Yin, Jianhua [1 ,3 ]
Xue, Jinmei [2 ,3 ]
Liu, Chuanyu [1 ]
机构
[1] BGI Res, Shenzhen 518083, Peoples R China
[2] Shanxi Med Univ, Hosp 2, Dept Otolaryngol Head & Neck Surg, Taiyuan 030001, Peoples R China
[3] Shanxi Med Univ, BGI Collaborat Ctr Future Med, Taiyuan 030001, Peoples R China
来源
STAR PROTOCOLS | 2024年 / 5卷 / 03期
关键词
DNA;
D O I
10.1016/j.xpro.2024.103298
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Examining nasal mucosa samples is crucial for nasal cavity disease research and diagnosis. Simultaneously obtaining high-quality data for single-cell transcriptomics (single-cell RNA sequencing [scRNA-seq]) and epigenomics (single-cell assay for transposase-accessible chromatin using sequencing [scATAC-seq]) of nasal mucosa tissues is challenging. Here, we present a protocol for processing human nasal mucosa samples to obtain data for both scRNA-seq and scATAC-seq. We describe steps for extracting human nasal mucosa tissue, mechanical and enzymatic dissociation, lysis of red blood cells, and a viability assay. We then detail procedures for library preparation and quality control.
引用
收藏
页数:16
相关论文
共 46 条
  • [21] Integrative analyses of scRNA-seq and scATAC-seq reveal CXCL14 as a key regulator of lymph node metastasis in breast cancer
    Xu, Kun
    Zhang, Wenwen
    Wang, Cong
    Hu, Longfei
    Wang, Runtian
    Wang, Cenzhu
    Tang, Lin
    Zhou, Guohua
    Zou, Bingjie
    Xie, Hui
    Tang, Jinhai
    Guan, Xiaoxiang
    HUMAN MOLECULAR GENETICS, 2021, 30 (05) : 370 - 380
  • [22] FAVA: high-quality functional association networks inferred from scRNA-seq and proteomics data
    Koutrouli, Mikaela
    Nastou, Katerina
    Lindez, Pau Piera
    Bouwmeester, Robbin
    Rasmussen, Simon
    Martens, Lennart
    Jensen, Lars Juhl
    BIOINFORMATICS, 2024, 40 (02)
  • [23] Protocol for fast scRNA-seq raw data processing using scKB and non-arbitrary quality control with COPILOT
    Hsu, Che-Wei
    Shahan, Rachel
    Nolan, Trevor M.
    Benfey, Philip N.
    Ohler, Uwe
    STAR PROTOCOLS, 2022, 3 (04):
  • [24] Protocol for optimized dissociation of human scalp tissue for hair follicle transcriptomics by scRNA-seq
    Yuan, Zishuo
    Chen, Junjie
    Xu, Yanwen
    Zhou, Zhentao
    Cai, Pengfei
    Wei, Xiaoyu
    Zheng, Huiwen
    Zhang, Jufang
    Yuan, Yue
    Liu, Chuanyu
    STAR PROTOCOLS, 2024, 5 (01):
  • [25] Choice of pre-processing pipeline influences clustering quality of scRNA-seq datasets
    Inbal Shainer
    Manuel Stemmer
    BMC Genomics, 22
  • [26] Choice of pre-processing pipeline influences clustering quality of scRNA-seq datasets
    Shainer, Inbal
    Stemmer, Manuel
    BMC GENOMICS, 2021, 22 (01)
  • [27] langevitour: Smooth Interactive Touring of High Dimensions, Demonstrated with scRNA-Seq Data
    Harrison, Paul
    R JOURNAL, 2023, 15 (02): : 206 - 219
  • [28] Computational approach to evaluate scRNA-seq data quality and gene body coverage with SkewC
    Abugessaisa, Imad
    Hasegawa, Akira
    Katayama, Shintaro
    Kere, Juha
    Kasukawa, Takeya
    STAR PROTOCOLS, 2023, 4 (01):
  • [29] A rank-based marker selection method for high throughput scRNA-seq data
    Alexander H. S. Vargo
    Anna C. Gilbert
    BMC Bioinformatics, 21
  • [30] A rank-based marker selection method for high throughput scRNA-seq data
    Vargo, Alexander H. S.
    Gilbert, Anna C.
    BMC BIOINFORMATICS, 2020, 21 (01)