Masked Autoencoder Transformer for Missing Data Imputation of PISA

被引:0
|
作者
Freire, Guilherme Mendonca [1 ]
Curi, Mariana [1 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Ave Trab Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
关键词
Item Response Theory; Missing Data; Neural Networks; Transformer Model; Variational Autoencoder;
D O I
10.1007/978-3-031-64315-6_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study introduces a scale-down transformer model to address the challenge of missing responses in educational assessments for psychometric evaluation. Traditional estimation methods for Item Response Theory (IRT) models are frequently computationally inefficient in generating estimates for a higher number of dimensions. The challenge becomes more pronounced when dealing with missing responses. We propose a Masked Autoencoder Transformer model for discrete input (DiTMAE) to impute missing answers for OECD-PISA response data. The model learns context information from the unmasked parts and reconstructs it using a decoder. For evaluation purposes, we estimate item and person parameters from two different approaches, (i) an adapted Variational Autoencoder that incorporates the Item Response Theory (IRT) method; (ii) the traditional statistical tool, Joint Maximum Likelihood (JML), that can produce estimates in occurrence of missing values.
引用
收藏
页码:364 / 372
页数:9
相关论文
共 50 条
  • [41] Missing data imputation in a transformer district based on time series imagingencoding and a generative adversarial network
    Liu K.
    Zhou F.
    Zhou H.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2022, 50 (24): : 129 - 136
  • [42] Multiple Imputation For Missing Ordinal Data
    Chen, Ling
    Toma-Drane, Mariana
    Valois, Robert F.
    Drane, J. Wanzer
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2005, 4 (01) : 288 - 299
  • [43] A Probabilistic Approach for Missing Data Imputation
    Arefin, Muhammed Nazmul
    Masum, Abdul Kadar Muhammad
    COMPLEXITY, 2024, 2024
  • [44] Quantum Circuit for Imputation of Missing Data
    Sanavio, Claudio
    Tibaldi, Simone
    Tignone, Edoardo
    Ercolessi, Elisa
    IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2024, 5
  • [45] MULTIPLE IMPUTATION AS A MISSING DATA MACHINE
    BRAND, J
    VANBUUREN, S
    VANMULLIGEN, EM
    TIMMERS, T
    GELSEMA, E
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 1994, : 303 - 306
  • [46] Multiple imputation with missing data indicators
    Beesley, Lauren J.
    Bondarenko, Irina
    Elliot, Michael R.
    Kurian, Allison W.
    Katz, Steven J.
    Taylor, Jeremy M. G.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (12) : 2685 - 2700
  • [47] Missing Data Imputation for Supervised Learning
    Poulos, Jason
    Valle, Rafael
    APPLIED ARTIFICIAL INTELLIGENCE, 2018, 32 (02) : 186 - 196
  • [49] Missing Data Imputation Toolbox for MATLAB
    Folch-Fortuny, Abel
    Arteaga, Francisco
    Ferrer, Alberto
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 154 : 93 - 100
  • [50] Imputation of missing ages in pedigree data
    Balise, Raymond R.
    Chen, Yu
    Dite, Gillian
    Felberg, Anna
    Sun, Limei
    Ziogas, Argyrios
    Whittemore, Alice S.
    HUMAN HEREDITY, 2007, 63 (3-4) : 168 - 174