Masked Autoencoder Transformer for Missing Data Imputation of PISA

被引:0
|
作者
Freire, Guilherme Mendonca [1 ]
Curi, Mariana [1 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Ave Trab Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
关键词
Item Response Theory; Missing Data; Neural Networks; Transformer Model; Variational Autoencoder;
D O I
10.1007/978-3-031-64315-6_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study introduces a scale-down transformer model to address the challenge of missing responses in educational assessments for psychometric evaluation. Traditional estimation methods for Item Response Theory (IRT) models are frequently computationally inefficient in generating estimates for a higher number of dimensions. The challenge becomes more pronounced when dealing with missing responses. We propose a Masked Autoencoder Transformer model for discrete input (DiTMAE) to impute missing answers for OECD-PISA response data. The model learns context information from the unmasked parts and reconstructs it using a decoder. For evaluation purposes, we estimate item and person parameters from two different approaches, (i) an adapted Variational Autoencoder that incorporates the Item Response Theory (IRT) method; (ii) the traditional statistical tool, Joint Maximum Likelihood (JML), that can produce estimates in occurrence of missing values.
引用
收藏
页码:364 / 372
页数:9
相关论文
共 50 条
  • [31] Multiple imputation for missing data
    Patrician, PA
    RESEARCH IN NURSING & HEALTH, 2002, 25 (01) : 76 - 84
  • [32] Imputation of missing data in surveys
    Rässler, S
    JAHRBUCHER FUR NATIONALOKONOMIE UND STATISTIK, 2000, 220 (01): : 64 - 94
  • [33] Multiple imputation of missing data
    Lydersen, Stian
    TIDSSKRIFT FOR DEN NORSKE LAEGEFORENING, 2022, 142 (02) : 151 - 151
  • [34] A Two-Stage Deep Autoencoder-Based Missing Data Imputation Method for Wind Farm SCADA Data
    Liu, Xin
    Zhang, Zijun
    IEEE SENSORS JOURNAL, 2021, 21 (09) : 10933 - 10945
  • [35] Traffic Data Imputation with Ensemble Convolutional Autoencoder
    Ye, Yongchao
    Zhang, Shuyu
    Yu, James J. Q.
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 1340 - 1345
  • [36] Denoising Autoencoder-Based Missing Value Imputation for Smart Meters
    Ryu, Seunghyoung
    Kim, Minsoo
    Kim, Hongseok
    IEEE ACCESS, 2020, 8 : 40656 - 40666
  • [37] From Missing Data Imputation to Data Generation
    Neves, Diogo Telmo
    Alves, Joao
    Naik, Marcel Ganesh
    Proenca, Alberto Jose
    Prasser, Fabian
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 61
  • [38] Influence of Data Distribution in Missing Data Imputation
    Santos, Miriam Seoane
    Soares, Jastin Pompeu
    Abreu, Pedro Henriques
    Araujo, Helder
    Santos, Joao
    ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2017, 2017, 10259 : 285 - 294
  • [39] Data variability in the imputation quality of missing data
    Stochero, Elisandra Lucia Moro
    Lucio, Alessandro Dal'Col
    Jacobi, Luciane Flores
    ACTA SCIENTIARUM-AGRONOMY, 2024, 46
  • [40] A unified hybrid transformer for joint MRI sequences super-resolution and missing data imputation
    Wang, Yulin
    Hu, Haifeng
    Yu, Shangqian
    Yang, Yuxin
    Guo, Yihao
    Song, Xiaopeng
    Chen, Feng
    Liu, Qian
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (13):