Masked Autoencoder Transformer for Missing Data Imputation of PISA

被引:0
|
作者
Freire, Guilherme Mendonca [1 ]
Curi, Mariana [1 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Ave Trab Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
关键词
Item Response Theory; Missing Data; Neural Networks; Transformer Model; Variational Autoencoder;
D O I
10.1007/978-3-031-64315-6_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study introduces a scale-down transformer model to address the challenge of missing responses in educational assessments for psychometric evaluation. Traditional estimation methods for Item Response Theory (IRT) models are frequently computationally inefficient in generating estimates for a higher number of dimensions. The challenge becomes more pronounced when dealing with missing responses. We propose a Masked Autoencoder Transformer model for discrete input (DiTMAE) to impute missing answers for OECD-PISA response data. The model learns context information from the unmasked parts and reconstructs it using a decoder. For evaluation purposes, we estimate item and person parameters from two different approaches, (i) an adapted Variational Autoencoder that incorporates the Item Response Theory (IRT) method; (ii) the traditional statistical tool, Joint Maximum Likelihood (JML), that can produce estimates in occurrence of missing values.
引用
收藏
页码:364 / 372
页数:9
相关论文
共 50 条
  • [21] Fault Diagnosis for Oil-immersed Transformer Based on Missing Data Imputation
    Liao, Caibo
    Yang, Jinxin
    Qiu, Zhibin
    Hu, Xiong
    Jiang, Zihao
    Li, Xin
    Gaodianya Jishu/High Voltage Engineering, 2024, 50 (09): : 4091 - 4100
  • [22] Missing data imputation: focusing on single imputation
    Zhang, Zhongheng
    ANNALS OF TRANSLATIONAL MEDICINE, 2016, 4 (01)
  • [23] Missing Data: data replacement and imputation
    Hutcheson, Graeme
    Pampaka, Maria
    JOURNAL OF MODELLING IN MANAGEMENT, 2012, 7 (02)
  • [24] Missing Data and Multiple Imputation
    Cummings, Peter
    JAMA PEDIATRICS, 2013, 167 (07) : 656 - 661
  • [25] Missing Data Imputation: A Survey
    Kelkar, Bhagyashri Abhay
    INTERNATIONAL JOURNAL OF DECISION SUPPORT SYSTEM TECHNOLOGY, 2022, 14 (01)
  • [26] Missing Data and Imputation Methods
    Schober, Patrick
    Vetter, Thomas R.
    ANESTHESIA AND ANALGESIA, 2020, 131 (05): : 1419 - 1420
  • [28] Missing data, imputation, and endogeneity
    McDonough, Ian K.
    Millimet, Daniel L.
    JOURNAL OF ECONOMETRICS, 2017, 199 (02) : 141 - 155
  • [29] BAYESIAN IMPUTATION FOR MISSING DATA
    Nads, Azman A.
    Polestico, Daisy Lou L.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2022, 79 : 83 - 104
  • [30] Imputation of Missing Healthcare Data
    Chowdhury, Mohaimanul Hoque
    Islam, Muhammad Kamrul
    Khan, Shahidul Islam
    2017 20TH INTERNATIONAL CONFERENCE OF COMPUTER AND INFORMATION TECHNOLOGY (ICCIT), 2017,