Masked Autoencoder Transformer for Missing Data Imputation of PISA

被引:0
|
作者
Freire, Guilherme Mendonca [1 ]
Curi, Mariana [1 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Ave Trab Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
关键词
Item Response Theory; Missing Data; Neural Networks; Transformer Model; Variational Autoencoder;
D O I
10.1007/978-3-031-64315-6_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study introduces a scale-down transformer model to address the challenge of missing responses in educational assessments for psychometric evaluation. Traditional estimation methods for Item Response Theory (IRT) models are frequently computationally inefficient in generating estimates for a higher number of dimensions. The challenge becomes more pronounced when dealing with missing responses. We propose a Masked Autoencoder Transformer model for discrete input (DiTMAE) to impute missing answers for OECD-PISA response data. The model learns context information from the unmasked parts and reconstructs it using a decoder. For evaluation purposes, we estimate item and person parameters from two different approaches, (i) an adapted Variational Autoencoder that incorporates the Item Response Theory (IRT) method; (ii) the traditional statistical tool, Joint Maximum Likelihood (JML), that can produce estimates in occurrence of missing values.
引用
收藏
页码:364 / 372
页数:9
相关论文
共 50 条
  • [1] Multiscale-attention masked autoencoder for missing data imputation of wind turbines
    Fan, Yuwei
    Feng, Chenlong
    Wu, Rui
    Liu, Chao
    Jiang, Dongxiang
    KNOWLEDGE-BASED SYSTEMS, 2024, 299
  • [2] Denoising Masked Autoencoder-Based Missing Imputation within Constrained Environments for Electric Load Data
    Jeong, Jaeik
    Ku, Tai-Yeon
    Park, Wan-Ki
    ENERGIES, 2023, 16 (24)
  • [3] Siamese Autoencoder Architecture for the Imputation of Data Missing Not at Random
    Pereira, Ricardo Cardoso
    Abreu, Pedro Henriques
    Rodrigues, Pedro Pereira
    JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 78
  • [4] Imputation of Missing Values in Training Data using Variational Autoencoder
    Hong, Xuerui
    Hao, Shuang
    2023 IEEE 39TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS, ICDEW, 2023, : 49 - 54
  • [5] MISSING DATA IN TRAFFIC ESTIMATION: A VARIATIONAL AUTOENCODER IMPUTATION METHOD
    Boquet, Guillem
    Lopez Vicario, Jose
    Morell, Antoni
    Serrano, Javier
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 2882 - 2886
  • [6] Autoencoder imputation of missing heterogeneous data for Alzheimer's disease classification
    Haridas, Namitha Thalekkara
    Sanchez-Bornot, Jose M.
    McClean, Paula L.
    Wong-Lin, KongFatt
    HEALTHCARE TECHNOLOGY LETTERS, 2024, 11 (06) : 452 - 460
  • [7] Missing Data Imputation With OLS-Based Autoencoder for Intelligent Manufacturing
    Wang, Yanxia
    Li, Kang
    Gan, Shaojun
    Cameron, Che
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2019, 55 (06) : 7219 - 7229
  • [8] Combining Convolution and Transformer for Missing Time Series Data Imputation
    Wang, Yi-Fan
    Bu, Shuai-Yu
    Yan, Jing-Hua
    Hou, Zhi-Wen
    Bu, Ling-Bin
    Meng, Fan-Xu
    Journal of Network Intelligence, 2023, 8 (03): : 823 - 838
  • [9] Multivariate Time Series Missing Data Imputation Using Recurrent Denoising Autoencoder
    Zhang, Jianye
    Yin, Peng
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 760 - 764
  • [10] Adaptive Masked Autoencoder Transformer for image classification
    Chen, Xiangru
    Liu, Chenjing
    Hu, Peng
    Lin, Jie
    Gong, Yunhong
    Chen, Yingke
    Peng, Dezhong
    Geng, Xue
    APPLIED SOFT COMPUTING, 2024, 164