LDCNN: A new arrhythmia detection technique with ECG signals using a linear deep convolutional neural network

被引:1
|
作者
Bayani, Ali [1 ]
Kargar, Masoud [1 ]
机构
[1] Islamic Azad Univ, Dept Comp Engn, Tabriz Branch, Tabriz, Iran
来源
PHYSIOLOGICAL REPORTS | 2024年 / 12卷 / 17期
关键词
arrhythmia detection; cardiovascular health; convolutional neural network; deep learning; electrocardiogram; VENTRICULAR-FIBRILLATION; FEATURE-EXTRACTION; CLASSIFICATION;
D O I
10.14814/phy2.16182
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The electrocardiogram (ECG) is a fundamental and widely used tool for diagnosing cardiovascular diseases. It involves recording cardiac electrical signals using electrodes, which illustrate the functioning of cardiac muscles during contraction and relaxation phases. ECG is instrumental in identifying abnormal cardiac activity, heart attacks, and various cardiac conditions. Arrhythmia detection, a critical aspect of ECG analysis, entails accurately classifying heartbeats. However, ECG signal analysis demands a high level of expertise, introducing the possibility of human errors in interpretation. Hence, there is a clear need for robust automated detection techniques. Recently, numerous methods have emerged for arrhythmia detection from ECG signals. In our research, we developed a novel one-dimensional deep neural network technique called linear deep convolutional neural network (LDCNN) to identify arrhythmias from ECG signals. We compare our suggested method with several state-of-the-art algorithms for arrhythmia detection. We evaluate our methodology using benchmark datasets, including the PTB Diagnostic ECG and MIT-BIH Arrhythmia databases. Our proposed method achieves high accuracy rates of 99.24% on the PTB Diagnostic ECG dataset and 99.38% on the MIT-BIH Arrhythmia dataset.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals
    Plawiak, Pawel
    Acharya, U. Rajendra
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (15): : 11137 - 11161
  • [32] Fetal Arrhythmia Detection based on Deep Learning using Fetal ECG Signals
    Nakatani, Sara
    Yamamoto, Kohei
    Ohtsuki, Tomoaki
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 2266 - 2271
  • [33] Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
    Acharya, U. Rajendra
    Oh, Shu Lih
    Hagiwara, Yuki
    Tan, Jen Hong
    Adeli, Hojjat
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 : 270 - 278
  • [34] Using Deep Convolutional Neural Network for Emotion Detection on a Physiological Signals Dataset (AMIGOS)
    Santamaria-Granados, Luz
    Munoz-Organero, Mario
    Ramirez-Gonzalez, Gustavo
    Abdulhay, Enas
    Arunkumar, N.
    IEEE ACCESS, 2019, 7 : 57 - 67
  • [35] Deep Convolutional Neural Network for Automated Detection of Mind Wandering using EEG Signals
    Hosseini, Seyedroohollah
    Guo, Xuan
    ACM-BCB'19: PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, 2019, : 314 - 319
  • [36] Deep convolutional neural network for the automated detection of Subthalamic nucleus using MER signals
    Hosny, Mohamed
    Zhu, Minwei
    Gao, Wenpeng
    Fu, Yili
    JOURNAL OF NEUROSCIENCE METHODS, 2021, 356
  • [37] ECG Arrhythmia Classification Using STFT-Based Spectrogram and Convolutional Neural Network
    Huang, Jingshan
    Chen, Binqiang
    Yao, Bin
    He, Wangpeng
    IEEE ACCESS, 2019, 7 : 92871 - 92880
  • [38] Convolutional squeeze-and-excitation network for ECG arrhythmia detection
    Ge, Rongjun
    Shen, Tengfei
    Zhou, Ying
    Liu, Chengyu
    Zhang, Libo
    Yang, Benqiang
    Yan, Ying
    Coatrieux, Jean-Louis
    Chen, Yang
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 121
  • [39] Deep neural network technique for automated detection of ADHD and CD using ECG signal
    Loh, Hui Wen
    Ooi, Chui Ping
    Oh, Shu Lih
    Barua, Prabal Datta
    Tan, Yi Ren
    Molinari, Filippo
    March, Sonja
    Acharya, U. Rajendra
    Fung, Daniel Shuen Sheng
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 241
  • [40] Detection of shockable ventricular cardiac arrhythmias from ECG signals using FFREWT filter-bank and deep convolutional neural network
    Panda, Rohan
    Jain, Sahil
    Tripathy, R. K.
    Acharya, U. Rajendra
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 124