LDCNN: A new arrhythmia detection technique with ECG signals using a linear deep convolutional neural network

被引:1
|
作者
Bayani, Ali [1 ]
Kargar, Masoud [1 ]
机构
[1] Islamic Azad Univ, Dept Comp Engn, Tabriz Branch, Tabriz, Iran
来源
PHYSIOLOGICAL REPORTS | 2024年 / 12卷 / 17期
关键词
arrhythmia detection; cardiovascular health; convolutional neural network; deep learning; electrocardiogram; VENTRICULAR-FIBRILLATION; FEATURE-EXTRACTION; CLASSIFICATION;
D O I
10.14814/phy2.16182
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The electrocardiogram (ECG) is a fundamental and widely used tool for diagnosing cardiovascular diseases. It involves recording cardiac electrical signals using electrodes, which illustrate the functioning of cardiac muscles during contraction and relaxation phases. ECG is instrumental in identifying abnormal cardiac activity, heart attacks, and various cardiac conditions. Arrhythmia detection, a critical aspect of ECG analysis, entails accurately classifying heartbeats. However, ECG signal analysis demands a high level of expertise, introducing the possibility of human errors in interpretation. Hence, there is a clear need for robust automated detection techniques. Recently, numerous methods have emerged for arrhythmia detection from ECG signals. In our research, we developed a novel one-dimensional deep neural network technique called linear deep convolutional neural network (LDCNN) to identify arrhythmias from ECG signals. We compare our suggested method with several state-of-the-art algorithms for arrhythmia detection. We evaluate our methodology using benchmark datasets, including the PTB Diagnostic ECG and MIT-BIH Arrhythmia databases. Our proposed method achieves high accuracy rates of 99.24% on the PTB Diagnostic ECG dataset and 99.38% on the MIT-BIH Arrhythmia dataset.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals
    U Rajendra Acharya
    Hamido Fujita
    Shu Lih Oh
    Yuki Hagiwara
    Jen Hong Tan
    Muhammad Adam
    Ru San Tan
    Applied Intelligence, 2019, 49 : 16 - 27
  • [22] Deep convolutional neural network optimized with hybrid marine predator's and nomadic people optimization for cardiac arrhythmia classification using ECG signals
    Ramkumar, M.
    Alagarsamy, Manjunathan
    Pradeep, D.
    Ramesh, R.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [23] Deep Convolutional Neural Network Regularization for Alcoholism Detection Using EEG Signals
    Mukhtar, Hamid
    Qaisar, Saeed Mian
    Zaguia, Atef
    SENSORS, 2021, 21 (16)
  • [24] Arrhythmia detection using TQWT, CEEMD and deep CNN-LSTM neural networks with ECG signals
    Zeng, Wei
    Su, Bo
    Chen, Yang
    Yuan, Chengzhi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (19) : 29913 - 29941
  • [25] Arrhythmia detection using TQWT, CEEMD and deep CNN-LSTM neural networks with ECG signals
    Wei Zeng
    Bo Su
    Yang Chen
    Chengzhi Yuan
    Multimedia Tools and Applications, 2023, 82 : 29913 - 29941
  • [26] Arrhythmia Detection Using Gated Recurrent Unit Network with ECG Signals
    Xu, Gang
    Xing, Guangxin
    Jiang, Juanjuan
    Jiang, Jian
    Ke, Yongsheng
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2020, 10 (03) : 750 - 757
  • [27] Automatic Identification of Arrhythmia from ECG Using AlexNet Convolutional Neural Network
    Mashrur, Fazla Rabbi
    Roy, Amit Dutta
    Saha, Dabasish Kumar
    2019 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL INFORMATION AND COMMUNICATION TECHNOLOGY (EICT), 2019,
  • [28] A Study on Arrhythmia via ECG Signal Classification Using the Convolutional Neural Network
    Wu, Mengze
    Lu, Yongdi
    Yang, Wenli
    Wong, Shen Yuong
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2021, 14
  • [29] Application of Deep Neural Network for Congestive Heart Failure Detection Using ECG Signals
    Zhang, Yue
    Xia, Ming
    4TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE APPLICATIONS AND TECHNOLOGIES (AIAAT 2020), 2020, 1642
  • [30] ECG Arrhythmia Classification Using Non-Linear Features and Convolutional Neural Networks
    Cajas, Sebastian
    Astaiza, Pedro
    Garcia-Chicangana, David Santiago
    Segura, Camilo
    Lopez, Diego M.
    2020 COMPUTING IN CARDIOLOGY, 2020,