Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals

被引:1037
作者
Acharya, U. Rajendra [1 ,2 ,3 ]
Oh, Shu Lih [1 ]
Hagiwara, Yuki [1 ]
Tan, Jen Hong [1 ]
Adeli, Hojjat [4 ,5 ,6 ,7 ,8 ]
机构
[1] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore 599489, Singapore
[2] SUSS Univ, Sch Sci & Technol, Dept Biomed Engn, Singapore, Singapore
[3] Univ Malaya, Fac Engn, Dept Biomed Engn, Kuala Lumpur, Malaysia
[4] Ohio State Univ, Dept Neurosci, 470 Hitchcock Hall,2070 Neil Ave, Columbus, OH 43210 USA
[5] Ohio State Univ, Dept Neurol, 470 Hitchcock Hall,2070 Neil Ave, Columbus, OH 43210 USA
[6] Ohio State Univ, Dept Biomed Engn, 470 Hitchcock Hall,2070 Neil Ave, Columbus, OH 43210 USA
[7] Ohio State Univ, Dept Biomed Informat, 470 Hitchcock Hall,2070 Neil Ave, Columbus, OH 43210 USA
[8] Ohio State Univ, Dept Civil Environm & Geodet Engn, 470 Hitchcock Hall,2070 Neil Ave, Columbus, OH 43210 USA
关键词
Epilepsy; Convolutional neural network; Encephalogram signals; Deep leaming; Seizure; PRINCIPAL COMPONENT ANALYSIS; EPILEPSY; IDENTIFICATION; CLASSIFICATION; SEGMENTATION; METHODOLOGY;
D O I
10.1016/j.compbiomed.2017.09.017
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively.
引用
收藏
页码:270 / 278
页数:9
相关论文
共 62 条
[1]  
Acharya U.R., 2012, J ENG MED H, V227
[2]   A deep convolutional neural network model to classify heartbeats [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad ;
Gertych, Arkadiusz ;
Tan, Ru San .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 89 :389-396
[3]   Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad .
INFORMATION SCIENCES, 2017, 415 :190-198
[4]   Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Lih, Oh Shu ;
Adam, Muhammad ;
Tan, Jen Hong ;
Chua, Chua Kuang .
KNOWLEDGE-BASED SYSTEMS, 2017, 132 :62-71
[5]   Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Lih, Oh Shu ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad .
INFORMATION SCIENCES, 2017, 405 :81-90
[6]   Application of entropies for automated diagnosis of epilepsy using EEG signals: A review [J].
Acharya, U. Rajendra ;
Fujita, H. ;
Sudarshan, Vidya K. ;
Bhat, Shreya ;
Koh, Joel E. W. .
KNOWLEDGE-BASED SYSTEMS, 2015, 88 :85-96
[7]   APPLICATION OF NON-LINEAR AND WAVELET BASED FEATURES FOR THE AUTOMATED IDENTIFICATION OF EPILEPTIC EEG SIGNALS [J].
Acharya, U. Rajendra ;
Sree, S. Vinitha ;
Alvin, Ang Peng Chuan ;
Yanti, Ratna ;
Suri, Jasjit S. .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2012, 22 (02)
[8]   Automated diagnosis of epileptic EEG using entropies [J].
Acharya, U. Rajendra ;
Molinari, Filippo ;
Sree, S. Vinitha ;
Chattopadhyay, Subhagata ;
Ng, Kwan-Hoong ;
Suri, Jasjit S. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2012, 7 (04) :401-408
[9]   Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework [J].
Acharya, U. Rajendra ;
Sree, S. Vinitha ;
Alvin, Ang Peng Chuan ;
Suri, Jasjit S. .
EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (10) :9072-9078
[10]   AUTOMATIC DETECTION OF EPILEPTIC EEG SIGNALS USING HIGHER ORDER CUMULANT FEATURES [J].
Acharya, U. Rajendra ;
Sree, S. Vinitha ;
Suri, Jasjit S. .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2011, 21 (05) :403-414