Hydrogen Production with a Protonic Ceramic Membrane Reactor on Porous Fe-Cr Alloy

被引:1
|
作者
Zheng, Haoyu [1 ,2 ]
Sata, Noriko [1 ]
Han, Feng [1 ]
Dayaghi, Amir Masoud [3 ]
Iguchi, Fumitada [4 ]
Develos-Bagarinao, Katherine [5 ]
Norby, Truls [3 ]
Stange, Marit [6 ]
Costa, Remi [1 ]
机构
[1] German Aerosp Ctr DLR, Inst Engn Thermodynam, Electrochem Energy Technol, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Inst Bldg Energet Thermotechnol & Energy Storage, D-70569 Stuttgart, Germany
[3] Univ Oslo, Ctr Mat Sci & Nanotechnol SMN, Dept Chem, NO-0315 Oslo, Norway
[4] Nihon Univ, Coll Engn, Dept Mech Engn, Koriyama, Fukushima 9638642, Japan
[5] Natl Inst Adv Ind Sci & Technol, Global Zero Emiss Res Ctr, Tsukuba, Ibaraki 3058569, Japan
[6] SINTEF, NO-0373 Oslo, Norway
来源
ACS ENERGY LETTERS | 2024年 / 9卷 / 08期
基金
芬兰科学院;
关键词
OXIDE FUEL-CELL; ELECTROLYTES; EXPANSION; SOFC; OPERATION;
D O I
10.1021/acsenergylett.4c01173
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A metal supported design is desirable for ceramic electrochemical cells because of its robustness. Yet, a strong alkaline character and a refractory nature of the electrolyte material make it challenging to densify onto a steel component. Here we show a metal supported protonic ceramic cell (MS-PCC) concept enabling similar to 90% ceramic material savings compared to traditional cell design. The manufacturing route combines wet ceramic processing with sintering and thin film deposition at temperatures below 1000 degrees C. The critical diffusive elements were sufficiently confined, and the volume variation of the different functional layers was limited to maintain the integrity of the thin film electrolyte. Applied to steam electrolysis for hydrogen production, the MS-PCC enabled a current density of about -0.84 A cm(-2) at 600 degrees C at a terminal voltage of 1.3 V. This concept offers incomparable perspectives for scale-up and opens up a broad range of applications for hydrogen or Power-to-X applications.
引用
收藏
页码:3962 / 3969
页数:8
相关论文
共 50 条
  • [41] On the miscibility gap at 800 K in the Fe-Cr alloy system
    Dubiel, S. M.
    Zukrowski, J.
    MATERIALS RESEARCH EXPRESS, 2019, 6 (02):
  • [42] HEAT-RESISTANT FE-CR ALLOY WITH POLYCARBOSILANE AS BINDER
    YAJIMA, S
    SHISHIDO, T
    KAYANO, H
    NATURE, 1976, 264 (5583) : 237 - 238
  • [43] The mechanical property of the oxide scale on Fe-Cr alloy steels
    Yang, Chan-Woo
    Kim, Jung-Hoon
    Triambulo, Ross E.
    Kang, Youn-Hee
    Lee, Jong-Sub
    Park, Jin-Woo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 549 : 6 - 10
  • [44] Grain Boundary Effect on Radiation Damage in Fe-Cr Alloy
    Zolnikov, K. P.
    Korchuganov, A. V.
    Kryzhevich, D. S.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2017 (AMHS'17), 2017, 1909
  • [45] Semiconductive behavior of passive films formed on Fe-Cr alloy
    Hiroaki Tsuchiya
    Shinji Fujimoto
    Toshio Shibata
    Journal of Electroceramics, 2006, 16 : 49 - 54
  • [46] Semiconductive behavior of passive films formed on Fe-Cr alloy
    Tsuchiya, H
    Fujimoto, S
    Shibata, T
    JOURNAL OF ELECTROCERAMICS, 2006, 16 (01) : 49 - 54
  • [47] PASSIVATING LAYERS FORMED IN NEUTRAL MEDIA ON A FE-CR ALLOY
    KUZNETSOV, YI
    ALEKSEEV, VN
    VALUEV, IA
    PROTECTION OF METALS, 1994, 30 (04): : 301 - 305
  • [48] Evolution of magnetization reversal mechanism in Fe-Cr alloy films
    Gao, T. R.
    Hao, S. P.
    Zhou, S. M.
    Sun, L.
    JOURNAL OF APPLIED PHYSICS, 2006, 100 (07)
  • [49] Yttria-Reinforced Fe-Cr Ferritic Alloy-Based Nanocomposites for Fusion Reactor Structural Applications
    Moses J. Paul
    V. M. Suntharavel Muthaiah
    Suhrit Mula
    Metallurgical and Materials Transactions A, 2021, 52 : 627 - 643
  • [50] A Study on Hardfacing Alloy Using Fe-Cr and Fe-B Powders
    Karip, E.
    Aydin, S.
    Muratoglu, M.
    ACTA PHYSICA POLONICA A, 2015, 128 (2B) : B160 - B163