Hydrogen Production with a Protonic Ceramic Membrane Reactor on Porous Fe-Cr Alloy

被引:1
|
作者
Zheng, Haoyu [1 ,2 ]
Sata, Noriko [1 ]
Han, Feng [1 ]
Dayaghi, Amir Masoud [3 ]
Iguchi, Fumitada [4 ]
Develos-Bagarinao, Katherine [5 ]
Norby, Truls [3 ]
Stange, Marit [6 ]
Costa, Remi [1 ]
机构
[1] German Aerosp Ctr DLR, Inst Engn Thermodynam, Electrochem Energy Technol, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Inst Bldg Energet Thermotechnol & Energy Storage, D-70569 Stuttgart, Germany
[3] Univ Oslo, Ctr Mat Sci & Nanotechnol SMN, Dept Chem, NO-0315 Oslo, Norway
[4] Nihon Univ, Coll Engn, Dept Mech Engn, Koriyama, Fukushima 9638642, Japan
[5] Natl Inst Adv Ind Sci & Technol, Global Zero Emiss Res Ctr, Tsukuba, Ibaraki 3058569, Japan
[6] SINTEF, NO-0373 Oslo, Norway
来源
ACS ENERGY LETTERS | 2024年 / 9卷 / 08期
基金
芬兰科学院;
关键词
OXIDE FUEL-CELL; ELECTROLYTES; EXPANSION; SOFC; OPERATION;
D O I
10.1021/acsenergylett.4c01173
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A metal supported design is desirable for ceramic electrochemical cells because of its robustness. Yet, a strong alkaline character and a refractory nature of the electrolyte material make it challenging to densify onto a steel component. Here we show a metal supported protonic ceramic cell (MS-PCC) concept enabling similar to 90% ceramic material savings compared to traditional cell design. The manufacturing route combines wet ceramic processing with sintering and thin film deposition at temperatures below 1000 degrees C. The critical diffusive elements were sufficiently confined, and the volume variation of the different functional layers was limited to maintain the integrity of the thin film electrolyte. Applied to steam electrolysis for hydrogen production, the MS-PCC enabled a current density of about -0.84 A cm(-2) at 600 degrees C at a terminal voltage of 1.3 V. This concept offers incomparable perspectives for scale-up and opens up a broad range of applications for hydrogen or Power-to-X applications.
引用
收藏
页码:3962 / 3969
页数:8
相关论文
共 50 条
  • [21] MICRO SEGREGATION OF CROMIUM IN FE-CR BINARY ALLOY
    SATO, S
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1984, 70 (13): : 1328 - 1328
  • [22] Evolution of Atomic Displacement Cascades in Fe-Cr Alloy
    Korchuganov, A. V.
    Zolnikov, K. P.
    Kryzhevich, D. S.
    ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2016, 2016, 1783
  • [23] Water Vapour Effects on Fe-Cr Alloy Oxidation
    Othman, Norinsan K.
    Zhang, Jianqiang
    Young, David J.
    OXIDATION OF METALS, 2010, 73 (1-2): : 337 - 352
  • [24] DAMAGE PRODUCTION-RATES OF NI IONS IN NI, CU, AND AN FE-CR ALLOY
    POKER, DB
    APPLETON, BR
    NOGGLE, TS
    OEN, OS
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (03): : 178 - 178
  • [25] Oxide reduction and diffusion in Fe-Cr alloy honeycombs
    Nadler, JH
    Sanders, TH
    Cochran, JK
    Kim, SS
    JOURNAL DE PHYSIQUE IV, 2004, 120 : 47 - 54
  • [26] Preparation and characterization of the electrodeposited Fe-Cr alloy film
    Wang, F
    Watanabe, T
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 349 (1-2): : 183 - 190
  • [27] Fibronectin adsorption on Fe-Cr alloy studied by XPS
    Galtayries, A
    Warocquier-Clérout, R
    Nage, MD
    Marcus, P
    SURFACE AND INTERFACE ANALYSIS, 2006, 38 (04) : 186 - 190
  • [28] MICRO-SEGREGATION OF CHROMIUM IN FE-CR ALLOY
    IGATA, N
    SATO, S
    ANDO, T
    DOI, H
    NISHIKAWA, O
    SHIBATA, M
    JOURNAL DE PHYSIQUE, 1984, 45 (NC9): : 403 - 408
  • [29] THERMODYNAMIC ANALYSIS OF CHLORIDIZATION USING A FE-CR ALLOY
    GUREVICH, YG
    FRAGE, NR
    GERMANYUK, NV
    RUSSIAN METALLURGY, 1978, (06): : 36 - 41
  • [30] Oxide reduction and sintering of Fe-Cr alloy honeycombs
    Nadler, JH
    Sanders, TH
    Speyer, RF
    JOURNAL OF MATERIALS RESEARCH, 2003, 18 (08) : 1787 - 1794