Hydrogen Production with a Protonic Ceramic Membrane Reactor on Porous Fe-Cr Alloy

被引:1
|
作者
Zheng, Haoyu [1 ,2 ]
Sata, Noriko [1 ]
Han, Feng [1 ]
Dayaghi, Amir Masoud [3 ]
Iguchi, Fumitada [4 ]
Develos-Bagarinao, Katherine [5 ]
Norby, Truls [3 ]
Stange, Marit [6 ]
Costa, Remi [1 ]
机构
[1] German Aerosp Ctr DLR, Inst Engn Thermodynam, Electrochem Energy Technol, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Inst Bldg Energet Thermotechnol & Energy Storage, D-70569 Stuttgart, Germany
[3] Univ Oslo, Ctr Mat Sci & Nanotechnol SMN, Dept Chem, NO-0315 Oslo, Norway
[4] Nihon Univ, Coll Engn, Dept Mech Engn, Koriyama, Fukushima 9638642, Japan
[5] Natl Inst Adv Ind Sci & Technol, Global Zero Emiss Res Ctr, Tsukuba, Ibaraki 3058569, Japan
[6] SINTEF, NO-0373 Oslo, Norway
来源
ACS ENERGY LETTERS | 2024年 / 9卷 / 08期
基金
芬兰科学院;
关键词
OXIDE FUEL-CELL; ELECTROLYTES; EXPANSION; SOFC; OPERATION;
D O I
10.1021/acsenergylett.4c01173
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A metal supported design is desirable for ceramic electrochemical cells because of its robustness. Yet, a strong alkaline character and a refractory nature of the electrolyte material make it challenging to densify onto a steel component. Here we show a metal supported protonic ceramic cell (MS-PCC) concept enabling similar to 90% ceramic material savings compared to traditional cell design. The manufacturing route combines wet ceramic processing with sintering and thin film deposition at temperatures below 1000 degrees C. The critical diffusive elements were sufficiently confined, and the volume variation of the different functional layers was limited to maintain the integrity of the thin film electrolyte. Applied to steam electrolysis for hydrogen production, the MS-PCC enabled a current density of about -0.84 A cm(-2) at 600 degrees C at a terminal voltage of 1.3 V. This concept offers incomparable perspectives for scale-up and opens up a broad range of applications for hydrogen or Power-to-X applications.
引用
收藏
页码:3962 / 3969
页数:8
相关论文
共 50 条
  • [31] δ-pearlite Reaction by Carburization in Fe-Cr Binary Alloy
    Wu, Hao
    Nakada, Nobuo
    ISIJ INTERNATIONAL, 2022, 62 (02) : 313 - 320
  • [32] OBSERVATIONS OF METAL OXIDE INTERFACE FOR A FE-CR ALLOY
    HOWES, VR
    CORROSION SCIENCE, 1968, 8 (04) : 221 - &
  • [33] COMPARISON OF BALL-MILLING OF FE CR POWDERS AND FE-CR CRYSTALLINE ALLOY
    RODRIGUEZ, VAP
    XIA, SK
    BAGGIOSAITOVITCH, E
    LARICA, C
    HYPERFINE INTERACTIONS, 1994, 83 (1-4): : 271 - 274
  • [34] Hydrogen Production in Catalytic Membrane Reactors Based on Porous Ceramic Converters
    Fedotov, A. S.
    Tsodikov, M., V
    Yaroslavtsev, A. B.
    PROCESSES, 2022, 10 (10)
  • [35] Electron-irradiation-induced Cr segregation in Fe-Cr model alloy pre-implanted with hydrogen ions
    Du, Yufeng
    Han, Wentuo
    Cui, Lijuan
    Wan, Farong
    MATERIALS CHARACTERIZATION, 2018, 139 : 364 - 372
  • [36] Evolution of magnetization reversal mechanism in Fe-Cr alloy films
    Gao, T.R.
    Hao, S.P.
    Zhou, S.M.
    Sun, L.
    Journal of Applied Physics, 2006, 100 (07):
  • [37] Atomistic modeling of nanosized Cr precipitate contribution to hardening in an Fe-Cr alloy
    Shim, Jae-Hyeok
    Kim, Dong-Ik
    Jung, Woo-Sang
    Cho, Young Whan
    Wirth, Brian D.
    JOURNAL OF NUCLEAR MATERIALS, 2009, 386-88 : 56 - 59
  • [38] Electronic Theoretical Study of the Influence of Cr on Corrosion Resistance of Fe-Cr Alloy
    Wang Yao
    Li Chunfu
    Lin Yuanhua
    ACTA METALLURGICA SINICA, 2017, 53 (05) : 622 - 630
  • [39] Directional solidification and solid state transformation in an Fe-Cr alloy
    Kurz, W
    Lima, M
    JAPAN INSTITUTE OF METALS, PROCEEDINGS, VOL 12, (JIMIC-3), PTS 1 AND 2: SOLID - SOLID PHASE TRANSFORMATIONS, 1999, : 1581 - 1588
  • [40] SPIN-WAVES IN FE-CR ALLOY BY NEUTRON SPECTROMETRY
    MIKKE, K
    JANKOWSKA, J
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1979, 14 (2-3) : 137 - 138