Hydrogen Production with a Protonic Ceramic Membrane Reactor on Porous Fe-Cr Alloy

被引:1
|
作者
Zheng, Haoyu [1 ,2 ]
Sata, Noriko [1 ]
Han, Feng [1 ]
Dayaghi, Amir Masoud [3 ]
Iguchi, Fumitada [4 ]
Develos-Bagarinao, Katherine [5 ]
Norby, Truls [3 ]
Stange, Marit [6 ]
Costa, Remi [1 ]
机构
[1] German Aerosp Ctr DLR, Inst Engn Thermodynam, Electrochem Energy Technol, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Inst Bldg Energet Thermotechnol & Energy Storage, D-70569 Stuttgart, Germany
[3] Univ Oslo, Ctr Mat Sci & Nanotechnol SMN, Dept Chem, NO-0315 Oslo, Norway
[4] Nihon Univ, Coll Engn, Dept Mech Engn, Koriyama, Fukushima 9638642, Japan
[5] Natl Inst Adv Ind Sci & Technol, Global Zero Emiss Res Ctr, Tsukuba, Ibaraki 3058569, Japan
[6] SINTEF, NO-0373 Oslo, Norway
来源
ACS ENERGY LETTERS | 2024年 / 9卷 / 08期
基金
芬兰科学院;
关键词
OXIDE FUEL-CELL; ELECTROLYTES; EXPANSION; SOFC; OPERATION;
D O I
10.1021/acsenergylett.4c01173
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A metal supported design is desirable for ceramic electrochemical cells because of its robustness. Yet, a strong alkaline character and a refractory nature of the electrolyte material make it challenging to densify onto a steel component. Here we show a metal supported protonic ceramic cell (MS-PCC) concept enabling similar to 90% ceramic material savings compared to traditional cell design. The manufacturing route combines wet ceramic processing with sintering and thin film deposition at temperatures below 1000 degrees C. The critical diffusive elements were sufficiently confined, and the volume variation of the different functional layers was limited to maintain the integrity of the thin film electrolyte. Applied to steam electrolysis for hydrogen production, the MS-PCC enabled a current density of about -0.84 A cm(-2) at 600 degrees C at a terminal voltage of 1.3 V. This concept offers incomparable perspectives for scale-up and opens up a broad range of applications for hydrogen or Power-to-X applications.
引用
收藏
页码:3962 / 3969
页数:8
相关论文
共 50 条
  • [1] Simulation of a porous ceramic membrane reactor for hydrogen production
    Yu, W
    Ohmori, T
    Yamamoto, T
    Endo, A
    Nakaiwa, M
    Hayakawa, T
    Itoh, N
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2005, 30 (10) : 1071 - 1079
  • [2] A protonic ceramic membrane reactor for the production of hydrogen from coal steam gasification
    Kyriakou, V.
    Garagounis, I.
    Vourros, A.
    Marnellos, G. E.
    Stoukides, M.
    JOURNAL OF MEMBRANE SCIENCE, 2018, 553 : 163 - 170
  • [3] THEORETICAL INVESTIGATION OF THE MECHANISM OF HYDROGEN BRITTLENESS OF IRON AND OF ALLOY FE-CR
    DOBROTVORSKII, AM
    AFANASEVA, OV
    PROTECTION OF METALS, 1993, 29 (05): : 606 - 610
  • [4] THERMODYNAMICS OF FE-CR ALLOY MELTS
    VITUSEVICH, VT
    BILETSKII, AK
    SHUMIKHIN, VS
    RUSSIAN METALLURGY, 1987, (03): : 61 - 65
  • [5] Simulation study on ceramic membrane reactor for hydrogen production
    Ohmori, T
    Yu, WF
    Yamamoto, T
    Endo, A
    Nakaiwa, M
    Itoh, N
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2005, 28 (07) : 1069 - 1075
  • [6] Optimal design and operation of methane steam reforming in a porous ceramic membrane reactor for hydrogen production
    Yu, W.
    Ohmori, T.
    Yamamoto, T.
    Endo, A.
    Nakaiwa, A.
    Itoh, N.
    CHEMICAL ENGINEERING SCIENCE, 2007, 62 (18-20) : 5627 - 5631
  • [7] Effect of dissolved hydrogen on Schottky barrier height of Fe-Cr alloy heterojunction
    Berahim, A. N.
    Zaharudin, M. Z.
    Ani, M. H.
    Arifin, S. K.
    INTERNATIONAL CONFERENCE ON ADVANCES IN MANUFACTURING AND MATERIALS ENGINEERING (ICAMME 2017), 2018, 290
  • [8] Reactions of U-Zr alloy with Fe and Fe-Cr alloy
    Nakamura, K
    Ogata, T
    Kurata, M
    Itoh, A
    Akabori, M
    JOURNAL OF NUCLEAR MATERIALS, 1999, 275 (03) : 246 - 254
  • [9] INVESTIGATION OF RADIATION DEFECTS IN FE-CR ALLOY
    ARBUZOV, VL
    DRUZHKOV, AP
    NIKOLAEV, AL
    KLOTSMAN, SM
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 1992, 124 (04): : 409 - 415
  • [10] EARLY GROWTH OF OXIDE ON A FE-CR ALLOY
    HOWES, VR
    CORROSION SCIENCE, 1967, 7 (11) : 735 - &