Phase transition in magic with random quantum circuits

被引:5
|
作者
Niroula, Pradeep [1 ,2 ,3 ]
White, Christopher David [1 ,2 ]
Wang, Qingfeng [2 ,3 ,4 ,5 ]
Johri, Sonika [6 ]
Zhu, Daiwei [6 ]
Monroe, Christopher [1 ,2 ,3 ,6 ,7 ,8 ]
Noel, Crystal [7 ,8 ]
Gullans, Michael J. [1 ]
机构
[1] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[2] NIST, College Pk, MD 20742 USA
[3] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[4] Univ Maryland, Chem Phys Program, College Pk, MD USA
[5] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD USA
[6] IonQ Inc, College Pk, MD USA
[7] Duke Univ, Duke Quantum Ctr, Dept Elect & Comp Engn, Durham, NC USA
[8] Duke Univ, Dept Phys, Durham, NC USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/s41567-024-02637-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Magic is a property of quantum states that enables universal fault-tolerant quantum computing using simple sets of gate operations. Understanding the mechanisms by which magic is created or destroyed is, therefore, a crucial step towards efficient and practical fault-tolerant computation. Many proposals for error correction in quantum computing make use of so-called stabilizer codes, which use multiqubit measurements to detect deviations from logical qubit states. Here we observe that a random stabilizer code subject to coherent errors exhibits a phase transition in magic, which we characterize through analytical, numerical and experimental probes. Below a critical error rate, stabilizer measurements remove the accumulated magic in the circuit, effectively protecting against coherent errors; above the critical error rate measurements concentrate magic. A better understanding of this behaviour in the resource theory of magic could help to identify the origins of quantum speedup and lead to methods for more efficient magic state generation. Coherent noise affecting a random error correcting code is now shown to produce a transition between phases that accumulate and destroy magic.
引用
收藏
页码:1786 / 1792
页数:8
相关论文
共 50 条
  • [41] A phase transition in the random transposition random walk
    Berestycki, Nathanael
    Durrett, Rick
    PROBABILITY THEORY AND RELATED FIELDS, 2006, 136 (02) : 203 - 233
  • [42] A phase transition in the random transposition random walk
    Nathanaël Berestycki
    Rick Durrett
    Probability Theory and Related Fields, 2006, 136 : 203 - 233
  • [43] Observing quantum many-body scars in random quantum circuits
    Andrade, Barbara
    Bhattacharya, Utso
    Chhajlany, Ravindra W.
    Grass, Tobias
    Lewenstein, Maciej
    PHYSICAL REVIEW A, 2024, 109 (05)
  • [44] The phase transition in a random hypergraph
    Karonski, M
    Luczak, T
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 142 (01) : 125 - 135
  • [45] The phase transition in a random graph
    Luczak, T
    COMBINATORICS, PAUL ERDOS IS EIGHTY, VOL. 2, 1996, 2 : 399 - 422
  • [46] SUPERCONDUCTING CIRCUITS Quantum phase slips
    Haviland, David
    NATURE PHYSICS, 2010, 6 (08) : 565 - 566
  • [47] Quantum to classical transition for random walks
    Brun, TA
    Carteret, HA
    Ambainis, A
    PHYSICAL REVIEW LETTERS, 2003, 91 (13) : 130602 - 130602
  • [48] Random Quantum Circuits are Approximate 2-designs
    Aram W. Harrow
    Richard A. Low
    Communications in Mathematical Physics, 2009, 291 : 257 - 302
  • [49] Quantum Coding with Low-Depth Random Circuits
    Gullans, Michael J.
    Krastanov, Stefan
    Huse, David A.
    Jiang, Liang
    Flammia, Steven T.
    PHYSICAL REVIEW X, 2021, 11 (03)
  • [50] Random-Matrix Models of Monitored Quantum Circuits
    Bulchandani, Vir B.
    Sondhi, S. L.
    Chalker, J. T.
    JOURNAL OF STATISTICAL PHYSICS, 2024, 191 (05)