Phase transition in magic with random quantum circuits

被引:5
|
作者
Niroula, Pradeep [1 ,2 ,3 ]
White, Christopher David [1 ,2 ]
Wang, Qingfeng [2 ,3 ,4 ,5 ]
Johri, Sonika [6 ]
Zhu, Daiwei [6 ]
Monroe, Christopher [1 ,2 ,3 ,6 ,7 ,8 ]
Noel, Crystal [7 ,8 ]
Gullans, Michael J. [1 ]
机构
[1] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[2] NIST, College Pk, MD 20742 USA
[3] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[4] Univ Maryland, Chem Phys Program, College Pk, MD USA
[5] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD USA
[6] IonQ Inc, College Pk, MD USA
[7] Duke Univ, Duke Quantum Ctr, Dept Elect & Comp Engn, Durham, NC USA
[8] Duke Univ, Dept Phys, Durham, NC USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/s41567-024-02637-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Magic is a property of quantum states that enables universal fault-tolerant quantum computing using simple sets of gate operations. Understanding the mechanisms by which magic is created or destroyed is, therefore, a crucial step towards efficient and practical fault-tolerant computation. Many proposals for error correction in quantum computing make use of so-called stabilizer codes, which use multiqubit measurements to detect deviations from logical qubit states. Here we observe that a random stabilizer code subject to coherent errors exhibits a phase transition in magic, which we characterize through analytical, numerical and experimental probes. Below a critical error rate, stabilizer measurements remove the accumulated magic in the circuit, effectively protecting against coherent errors; above the critical error rate measurements concentrate magic. A better understanding of this behaviour in the resource theory of magic could help to identify the origins of quantum speedup and lead to methods for more efficient magic state generation. Coherent noise affecting a random error correcting code is now shown to produce a transition between phases that accumulate and destroy magic.
引用
收藏
页码:1786 / 1792
页数:8
相关论文
共 50 条
  • [31] Random Stimuli Generation for the Verification of Quantum Circuits
    Burgholzer, Lukas
    Kueng, Richard
    Wille, Robert
    2021 26TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2021, : 767 - 772
  • [32] Design of Quantum Circuits for Random Walk Algorithms
    Chakrabarti, Amlan
    Lin, ChiaChun
    Jha, Niraj K.
    2012 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI), 2012, : 135 - 140
  • [33] Principle of majorization: Application to random quantum circuits
    Vallejos, Raul O.
    de Melo, Fernando
    Carlo, Gabriel G.
    PHYSICAL REVIEW A, 2021, 104 (01)
  • [34] Random Quantum Circuits Anticoncentrate in Log Depth
    Dalzell, Alexander M.
    Hunter-Jones, Nicholas
    Brandao, Fernando G. S. L.
    PRX QUANTUM, 2022, 3 (01):
  • [35] Effective Field Theory of Random Quantum Circuits
    Liao, Yunxiang
    Galitski, Victor
    ENTROPY, 2022, 24 (06)
  • [36] Propagation of correlations in local random quantum circuits
    Siddhartha Santra
    Radhakrishnan Balu
    Quantum Information Processing, 2016, 15 : 4613 - 4628
  • [37] Propagation of correlations in local random quantum circuits
    Santra, Siddhartha
    Balu, Radhakrishnan
    QUANTUM INFORMATION PROCESSING, 2016, 15 (11) : 4613 - 4628
  • [38] Quantum Phase Transition at Nonzero Doping in a Random t-J Model
    Shackleton, Henry
    Wietek, Alexander
    Georges, Antoine
    Sachdev, Subir
    PHYSICAL REVIEW LETTERS, 2021, 126 (13)
  • [39] Disorder induced phase transition in a two-dimensional random quantum antiferromagnet
    Sandvik, Anders W.
    Vekic, Marco
    Physical Review Letters, 1995, 74 (07):
  • [40] Dynamics of a quantum phase transition in the random Ising model: Logarithmic dependence of the defect density on the transition rate
    Dziarmaga, Jacek
    PHYSICAL REVIEW B, 2006, 74 (06):