Phase transition in magic with random quantum circuits

被引:5
|
作者
Niroula, Pradeep [1 ,2 ,3 ]
White, Christopher David [1 ,2 ]
Wang, Qingfeng [2 ,3 ,4 ,5 ]
Johri, Sonika [6 ]
Zhu, Daiwei [6 ]
Monroe, Christopher [1 ,2 ,3 ,6 ,7 ,8 ]
Noel, Crystal [7 ,8 ]
Gullans, Michael J. [1 ]
机构
[1] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[2] NIST, College Pk, MD 20742 USA
[3] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[4] Univ Maryland, Chem Phys Program, College Pk, MD USA
[5] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD USA
[6] IonQ Inc, College Pk, MD USA
[7] Duke Univ, Duke Quantum Ctr, Dept Elect & Comp Engn, Durham, NC USA
[8] Duke Univ, Dept Phys, Durham, NC USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/s41567-024-02637-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Magic is a property of quantum states that enables universal fault-tolerant quantum computing using simple sets of gate operations. Understanding the mechanisms by which magic is created or destroyed is, therefore, a crucial step towards efficient and practical fault-tolerant computation. Many proposals for error correction in quantum computing make use of so-called stabilizer codes, which use multiqubit measurements to detect deviations from logical qubit states. Here we observe that a random stabilizer code subject to coherent errors exhibits a phase transition in magic, which we characterize through analytical, numerical and experimental probes. Below a critical error rate, stabilizer measurements remove the accumulated magic in the circuit, effectively protecting against coherent errors; above the critical error rate measurements concentrate magic. A better understanding of this behaviour in the resource theory of magic could help to identify the origins of quantum speedup and lead to methods for more efficient magic state generation. Coherent noise affecting a random error correcting code is now shown to produce a transition between phases that accumulate and destroy magic.
引用
收藏
页码:1786 / 1792
页数:8
相关论文
共 50 条
  • [21] Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits
    张琦
    张广铭
    Chinese Physics Letters, 2022, 39 (05) : 23 - 28
  • [22] Complexity of Quantum Circuits via Sensitivity, Magic, and Coherence
    Bu, Kaifeng
    Garcia, Roy J.
    Jaffe, Arthur
    Koh, Dax Enshan
    Li, Lu
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (07)
  • [23] Convergence conditions for random quantum circuits
    Emerson, J
    Livine, E
    Lloyd, S
    PHYSICAL REVIEW A, 2005, 72 (06):
  • [24] Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics
    葛自勇
    黄瑞珍
    孟子杨
    范桁
    Chinese Physics B, 2022, (02) : 255 - 260
  • [25] Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics
    Ge, Zi-Yong
    Huang, Rui-Zhen
    Meng, Zi-Yang
    Fan, Heng
    CHINESE PHYSICS B, 2022, 31 (02)
  • [26] Phase transition and evidence of fast-scrambling phase in measurement-only quantum circuits
    Kuno, Yoshihito
    Orito, Takahiro
    Ichinose, Ikuo
    PHYSICAL REVIEW B, 2023, 108 (09)
  • [27] Steering-induced phase transition in measurement-only quantum circuits
    Qian, Dongheng
    Wang, Jing
    PHYSICAL REVIEW B, 2024, 109 (02)
  • [28] Quantum phase transition in the random antiferromagnetic spin-1 chain
    Saguia, A
    Boechat, B
    Continentino, MA
    PHYSICAL REVIEW B, 2000, 62 (09) : 5541 - 5545
  • [29] Quantum advantage of unitary Clifford circuits with magic state inputs
    Yoganathan, Mithuna
    Jozsa, Richard
    Strelchuk, Sergii
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2225):
  • [30] Quantum and Classical Dynamics with Random Permutation Circuits
    Bertini, Bruno
    Klobas, Katja
    Kos, Pavel
    Malz, Daniel
    PHYSICAL REVIEW X, 2025, 15 (01):