ON THE FRACTAL DIMENSION OF A FRACTAL SURFACE WITH ONE SINGLE UNBOUNDED VARIATION POINT

被引:0
|
作者
Guo, J. R. [1 ]
Liang, Y. S. [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
The Fractal Surface; The Box Dimension; The Hausdorff Dimension; GRAPHS;
D O I
10.1142/S0218348X24501044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a surface with fractal characteristics on the basis of a continuous function has been constructed. We conducted a study on the Box dimension and the Hausdorff dimension of this surface, building upon this foundation. We found that there exists a certain relationship between the dimensionality of the surface with fractal characteristics, which is obtained from the rotation of a fractal curve.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Fractal Dimension of Color Fractal Images
    Ivanovici, Mihai
    Richard, Noel
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (01) : 227 - 235
  • [32] APPROXIMATION WITH FRACTAL FUNCTIONS BY FRACTAL DIMENSION
    Liang, Y. S.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)
  • [33] Fractal dimension estimators for a fractal process
    Morita, T
    Sato, K
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2005, 46 (03) : 631 - 637
  • [34] Fractal dimension of semiconducting fractal sensors
    Danik, G
    Gorobets, NN
    Tolstaya, AA
    Timonyk, VA
    14th International Crimean Conference: Microwave & Telecommunication Technology, Conference Proceedings, 2004, : 570 - 571
  • [35] Computation methods for fractal dimension of surface profile
    China Univ of Mining and Technology, Xuzhou, China
    Mocaxue Xuebao, 4 (354-362):
  • [36] Fractal dimension of the surface of porous ceramic materials
    Kul'kov, SN
    Tomas, J
    Buyakova, SP
    TECHNICAL PHYSICS LETTERS, 2006, 32 (01) : 73 - 75
  • [37] SURFACE FRACTAL DIMENSION OF SMALL METALLIC PARTICLES
    ROMEU, D
    GOMEZ, A
    PEREZRAMIREZ, JG
    SILVA, R
    PEREZ, OL
    GONZALEZ, AE
    JOSEYACAMAN, M
    PHYSICAL REVIEW LETTERS, 1986, 57 (20) : 2552 - 2555
  • [38] THERMODYNAMIC METHOD FOR CALCULATING SURFACE FRACTAL DIMENSION
    NEIMARK, AV
    JETP LETTERS, 1990, 51 (10) : 607 - 610
  • [39] ON DIRECTION-INVARIANCE OF FRACTAL DIMENSION ON A SURFACE
    HALL, P
    DAVIES, S
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1995, 60 (03): : 271 - 274
  • [40] Fractal dimension of the surface of porous ceramic materials
    S. N. Kuls’kov
    J. Tomaš
    S. P. Buyakova
    Technical Physics Letters, 2006, 32 : 73 - 75