Computation methods for fractal dimension of surface profile

被引:0
|
作者
China Univ of Mining and Technology, Xuzhou, China [1 ]
机构
来源
Mocaxue Xuebao | / 4卷 / 354-362期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
(Edited Abstract)
引用
收藏
相关论文
共 50 条
  • [1] MEASUREMENT OF FRACTAL DIMENSION FROM SURFACE ASPERITY PROFILE
    SASAJIMA, K
    TSUKADA, T
    INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 1992, 32 (1-2): : 125 - 127
  • [2] Measurement of fractal dimension from surface asperity profile
    Sasajima, K.
    Tsukada, T.
    International Journal of Machine Tools and Manufacture, 1992, 32 (1-2) : 125 - 127
  • [3] Influence of sampling length on estimated fractal dimension of surface profile
    Zuo, Xue
    Tang, Xiang
    Zhou, Yuankai
    CHAOS SOLITONS & FRACTALS, 2020, 135
  • [4] COMPUTATION OF THE FRACTAL DIMENSION OF METEOROLOGICAL QUANTITIES
    Jura, Jakub
    Bila, Jiri
    16TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MENDEL 2010, 2010, : 140 - 145
  • [5] Remarks to BCM for Fractal Dimension Computation
    Kolcun, Alexej
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [6] Fractal dimension computation methods for gas diffusion layer of PEM fuel cells
    2005, Wuhan University of Technology, Wuhan, China (29):
  • [7] Fractal Dimension Modeling of Surface Profile and Optimization in EDM Using Response Surface Method
    Sahoo, P.
    Barman, T. K.
    Routara, B. C.
    JOURNAL FOR MANUFACTURING SCIENCE AND PRODUCTION, 2008, 9 (1-2) : 19 - 32
  • [8] EFFICIENT COMPUTATION OF JULIA SETS AND THEIR FRACTAL DIMENSION
    SAUPE, D
    PHYSICA D, 1987, 28 (03): : 358 - 370
  • [9] Box dimension of fractal attractors and their numerical computation
    Freiberg, Uta
    Kohl, Stefan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 95
  • [10] PERCOLATION AT A SURFACE - THE SURFACE FRACTAL DIMENSION
    DEBELL, K
    LOOKMAN, T
    PHYSICAL REVIEW B, 1986, 34 (07): : 4812 - 4814