ON THE FRACTAL DIMENSION OF A FRACTAL SURFACE WITH ONE SINGLE UNBOUNDED VARIATION POINT

被引:0
|
作者
Guo, J. R. [1 ]
Liang, Y. S. [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
The Fractal Surface; The Box Dimension; The Hausdorff Dimension; GRAPHS;
D O I
10.1142/S0218348X24501044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a surface with fractal characteristics on the basis of a continuous function has been constructed. We conducted a study on the Box dimension and the Hausdorff dimension of this surface, building upon this foundation. We found that there exists a certain relationship between the dimensionality of the surface with fractal characteristics, which is obtained from the rotation of a fractal curve.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Fractal dimension of metallic fracture surface
    Piotr Kotowski
    International Journal of Fracture, 2006, 141 : 269 - 286
  • [22] FRACTAL DIMENSION OF COALESCENCE HIDDEN-VARIABLE FRACTAL INTERPOLATION SURFACE
    Prasad, Srijanani Anurag
    Kapoor, G. P.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2011, 19 (02) : 195 - 201
  • [23] FRACTAL DIMENSION FOR THE ROUGHNESS OF A FILM SURFACE
    NAKAMURA, M
    PHYSICAL REVIEW B, 1989, 40 (04): : 2549 - 2550
  • [24] Fractal dimension of a surface as an order parameter
    Kobelev, YL
    Kobelev, LY
    Romanov, EP
    DOKLADY AKADEMII NAUK, 2000, 370 (06) : 757 - 759
  • [25] FRACTAL DIMENSION OF FRACTURED SURFACE OF ROCKS
    施行觉
    牛志仁
    Chinese Science Bulletin, 1991, (21) : 1845 - 1846
  • [26] FRACTAL SURFACE DIMENSION OF PROTEINS - LYSOZYME
    PFEIFER, P
    WELZ, U
    WIPPERMANN, H
    CHEMICAL PHYSICS LETTERS, 1985, 113 (06) : 535 - 540
  • [27] FRACTAL DIMENSION OF THE FRACTURED SURFACE OF MATERIALS
    LUNG, CW
    ZHANG, SZ
    PHYSICA D, 1989, 38 (1-3): : 242 - 245
  • [28] Fractal dimension of metallic fracture surface
    Kotowski, Piotr
    INTERNATIONAL JOURNAL OF FRACTURE, 2006, 141 (1-2) : 269 - 286
  • [29] The dimension of a point: Computability meets fractal geometry
    Lutz, JH
    NEW COMPUTATIONAL PARADIGMS, 2005, 3526 : 299 - 299
  • [30] Shape Representation of Fractal Dimension on Point Cloud
    Zhang, Zhiyi
    Liu, Ni
    Feng, Xuemei
    Wang, Di
    Yang, Long
    Wang, Zepeng
    2019 NICOGRAPH INTERNATIONAL (NICOINT), 2019, : 102 - 105