Generalization of Quantum Machine Learning Models Using Quantum Fisher Information Metric

被引:2
|
作者
Haug, Tobias [1 ,2 ]
Kim, M. S. [2 ]
机构
[1] Technol Innovat Inst, Quantum Res Ctr, Abu Dhabi, U Arab Emirates
[2] Imperial Coll London, Blackett Lab, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
DYNAMICS;
D O I
10.1103/PhysRevLett.133.050603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Generalization is the ability of machine learning models to make accurate predictions on new data by learning from training data. However, understanding generalization of quantum machine learning models has been a major challenge. Here, we introduce the data quantum Fisher information metric (DQFIM). It describes the capacity of variational quantum algorithms depending on variational ansatz, training data, and their symmetries. We apply the DQFIM to quantify circuit parameters and training data needed to successfully train and generalize. Using the dynamical Lie algebra, we explain how to generalize using a low number of training states. Counterintuitively, breaking symmetries of the training data can help to improve generalization. Finally, we find that out-of-distribution generalization, where training and testing data are drawn from different data distributions, can be better than using the same distribution. Our work provides a useful framework to explore the power of quantum machine learning models.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Operational Interpretation of Quantum Fisher Information in Quantum Thermodynamics
    Marvian, Iman
    PHYSICAL REVIEW LETTERS, 2022, 129 (19)
  • [42] Thermal quantum Fisher information in quantum dot system
    Berrada, K.
    SOLID STATE COMMUNICATIONS, 2014, 184 : 1 - 5
  • [43] Protecting Quantum Fisher Information in Correlated Quantum Channels
    Hu, Ming-Liang
    Wang, Hui-Fang
    ANNALEN DER PHYSIK, 2020, 532 (01)
  • [44] INFORMATION SCIENCE Machine learning in quantum spaces
    Schuld, Maria
    NATURE, 2019, 567 (7747) : 179 - 181
  • [45] Retrieving information from a black hole using quantum machine learning
    Leone, Lorenzo
    Oliviero, Salvatore F. E.
    Piemontese, Stefano
    True, Sarah
    Hamma, Alioscia
    PHYSICAL REVIEW A, 2022, 106 (06)
  • [46] Parameterized quantum circuits as machine learning models
    Benedetti, Marcello
    Lloyd, Erika
    Sack, Stefan
    Fiorentini, Mattia
    QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (04)
  • [47] Subtleties in the trainability of quantum machine learning models
    Thanasilp, Supanut
    Wang, Samson
    Nghiem, Nhat Anh
    Coles, Patrick
    Cerezo, Marco
    QUANTUM MACHINE INTELLIGENCE, 2023, 5 (01)
  • [48] Subtleties in the trainability of quantum machine learning models
    Supanut Thanasilp
    Samson Wang
    Nhat Anh Nghiem
    Patrick Coles
    Marco Cerezo
    Quantum Machine Intelligence, 2023, 5
  • [49] Machine learning effective models for quantum systems
    Rigo, Jonas B.
    Mitchell, Andrew K.
    PHYSICAL REVIEW B, 2020, 101 (24)
  • [50] Adaptive pruning algorithm using a quantum Fisher information matrix for parameterized quantum circuits
    Ohno, Hiroshi
    QUANTUM MACHINE INTELLIGENCE, 2024, 6 (02)