Generalization of Quantum Machine Learning Models Using Quantum Fisher Information Metric

被引:2
|
作者
Haug, Tobias [1 ,2 ]
Kim, M. S. [2 ]
机构
[1] Technol Innovat Inst, Quantum Res Ctr, Abu Dhabi, U Arab Emirates
[2] Imperial Coll London, Blackett Lab, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
DYNAMICS;
D O I
10.1103/PhysRevLett.133.050603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Generalization is the ability of machine learning models to make accurate predictions on new data by learning from training data. However, understanding generalization of quantum machine learning models has been a major challenge. Here, we introduce the data quantum Fisher information metric (DQFIM). It describes the capacity of variational quantum algorithms depending on variational ansatz, training data, and their symmetries. We apply the DQFIM to quantify circuit parameters and training data needed to successfully train and generalize. Using the dynamical Lie algebra, we explain how to generalize using a low number of training states. Counterintuitively, breaking symmetries of the training data can help to improve generalization. Finally, we find that out-of-distribution generalization, where training and testing data are drawn from different data distributions, can be better than using the same distribution. Our work provides a useful framework to explore the power of quantum machine learning models.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Generalization in quantum machine learning from few training data
    Matthias C. Caro
    Hsin-Yuan Huang
    M. Cerezo
    Kunal Sharma
    Andrew Sornborger
    Lukasz Cincio
    Patrick J. Coles
    Nature Communications, 13
  • [32] Understanding quantum machine learning also requires rethinking generalization
    Gil-Fuster E.
    Eisert J.
    Bravo-Prieto C.
    Nature Communications, 15 (1)
  • [33] Dynamical simulation via quantum machine learning with provable generalization
    Gibbs, Joe
    Holmes, Zoe
    Caro, Matthias C.
    Ezzell, Nicholas
    Huang, Hsin-Yuan
    Cincio, Lukasz
    Sornborger, Andrew T.
    Coles, Patrick J.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [34] Chaos and quantum Fisher information in the quantum kicked top
    Wang Xiao-Qian
    Ma Jian
    Zhang Xi-He
    Wang Xiao-Guang
    CHINESE PHYSICS B, 2011, 20 (05)
  • [35] Chaos and quantum Fisher information in the quantum kicked top
    王晓茜
    马健
    张喜和
    王晓光
    Chinese Physics B, 2011, (05) : 203 - 207
  • [36] Quantum Covariance, Quantum Fisher Information, and the Uncertainty Relations
    Gibilisco, Paolo
    Hiai, Fumio
    Petz, Denes
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (01) : 439 - 443
  • [37] Quantum coherence and quantum Fisher information in the XXZ system
    Ye, Biao-Liang
    Xue, Li-Yuan
    Fang, Yu-Liang
    Liu, Sheng
    Wu, Qi-Cheng
    Zhou, Yan-Hui
    Yang, Chui-Ping
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 115 (115):
  • [38] Robust Estimation of the Quantum Fisher Information on a Quantum Processor
    Vitale, Vittorio
    Rath, Aniket
    Jurcevic, Petar
    Elben, Andreas
    Branciard, Cyril
    Vermersch, Benoit
    PRX QUANTUM, 2024, 5 (03):
  • [39] Variational quantum algorithm for estimating the quantum Fisher information
    Beckey, Jacob L.
    Cerezo, M.
    Sone, Akira
    Coles, Patrick J.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [40] Extended convexity of quantum Fisher information in quantum metrology
    Alipour, S.
    Rezakhani, A. T.
    PHYSICAL REVIEW A, 2015, 91 (04):