Generalization of Quantum Machine Learning Models Using Quantum Fisher Information Metric

被引:2
|
作者
Haug, Tobias [1 ,2 ]
Kim, M. S. [2 ]
机构
[1] Technol Innovat Inst, Quantum Res Ctr, Abu Dhabi, U Arab Emirates
[2] Imperial Coll London, Blackett Lab, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
DYNAMICS;
D O I
10.1103/PhysRevLett.133.050603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Generalization is the ability of machine learning models to make accurate predictions on new data by learning from training data. However, understanding generalization of quantum machine learning models has been a major challenge. Here, we introduce the data quantum Fisher information metric (DQFIM). It describes the capacity of variational quantum algorithms depending on variational ansatz, training data, and their symmetries. We apply the DQFIM to quantify circuit parameters and training data needed to successfully train and generalize. Using the dynamical Lie algebra, we explain how to generalize using a low number of training states. Counterintuitively, breaking symmetries of the training data can help to improve generalization. Finally, we find that out-of-distribution generalization, where training and testing data are drawn from different data distributions, can be better than using the same distribution. Our work provides a useful framework to explore the power of quantum machine learning models.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Continuity of the quantum Fisher information
    Rezakhani, A. T.
    Hassani, M.
    Alipour, S.
    PHYSICAL REVIEW A, 2019, 100 (03)
  • [22] Quantum Fisher information with coherence
    Hradil, Zdenek
    Rehacek, Jaroslav
    Sanchez-Soto, Luis
    Englert, Berthold-Georg
    OPTICA, 2019, 6 (11): : 1437 - 1440
  • [23] Quantum interference and Fisher information
    Hradil, Z
    Rehácek, J
    PHYSICS LETTERS A, 2005, 334 (04) : 267 - 272
  • [24] On the realization of quantum Fisher information
    Saha, Aparna
    Talukdar, B.
    Chatterjee, Supriya
    EUROPEAN JOURNAL OF PHYSICS, 2017, 38 (02)
  • [25] INTRODUCTION TO QUANTUM FISHER INFORMATION
    Petz, D.
    Ghinea, C.
    QUANTUM PROBABILITY AND RELATED TOPICS, 2011, 27 : 261 - 281
  • [26] Fisher information in quantum statistics
    Barndorff-Nielsen, OE
    Gill, RD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (24): : 4481 - 4490
  • [27] Inequalities for quantum Fisher information
    Gibilisco, Paolo
    Imparato, Daniele
    Isola, Tommaso
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (01) : 317 - 327
  • [28] Broadcasting quantum Fisher information
    Lu, Xiao-Ming
    Sun, Zhe
    Wang, Xiaoguang
    Luo, Shunlong
    Oh, C. H.
    PHYSICAL REVIEW A, 2013, 87 (05):
  • [29] Quantum state tomography using quantum machine learning
    Innan, Nouhaila
    Siddiqui, Owais Ishtiaq
    Arora, Shivang
    Ghosh, Tamojit
    Kocak, Yasemin Poyraz
    Paragas, Dominic
    Galib, Abdullah Al Omar
    Khan, Muhammad Al-Zafar
    Bennai, Mohamed
    QUANTUM MACHINE INTELLIGENCE, 2024, 6 (01)
  • [30] Generalization in quantum machine learning from few training data
    Caro, Matthias C.
    Huang, Hsin-Yuan
    Cerezo, M.
    Sharma, Kunal
    Sornborger, Andrew
    Cincio, Lukasz
    Coles, Patrick J.
    NATURE COMMUNICATIONS, 2022, 13 (01)