Generalization of Quantum Machine Learning Models Using Quantum Fisher Information Metric

被引:2
|
作者
Haug, Tobias [1 ,2 ]
Kim, M. S. [2 ]
机构
[1] Technol Innovat Inst, Quantum Res Ctr, Abu Dhabi, U Arab Emirates
[2] Imperial Coll London, Blackett Lab, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
DYNAMICS;
D O I
10.1103/PhysRevLett.133.050603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Generalization is the ability of machine learning models to make accurate predictions on new data by learning from training data. However, understanding generalization of quantum machine learning models has been a major challenge. Here, we introduce the data quantum Fisher information metric (DQFIM). It describes the capacity of variational quantum algorithms depending on variational ansatz, training data, and their symmetries. We apply the DQFIM to quantify circuit parameters and training data needed to successfully train and generalize. Using the dynamical Lie algebra, we explain how to generalize using a low number of training states. Counterintuitively, breaking symmetries of the training data can help to improve generalization. Finally, we find that out-of-distribution generalization, where training and testing data are drawn from different data distributions, can be better than using the same distribution. Our work provides a useful framework to explore the power of quantum machine learning models.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Generalization in Quantum Machine Learning: A Quantum Information Standpoint
    Banchi, Leonardo
    Pereira, Jason
    Pirandola, Stefano
    PRX QUANTUM, 2021, 2 (04):
  • [2] Generalization despite overfitting in quantum machine learning models
    Peters, Evan
    Schuld, Maria
    QUANTUM, 2023, 7
  • [3] Discontinuities of the quantum Fisher information and the Bures metric
    Safranek, Dominik
    PHYSICAL REVIEW A, 2017, 95 (05)
  • [4] Generalization Performance of Quantum Metric Learning Classifiers
    Kim, Jonathan
    Bekiranov, Stefan
    BIOMOLECULES, 2022, 12 (11)
  • [5] QUANTUM FISHER METRIC AND ESTIMATION FOR PURE STATE MODELS
    FUJIWARA, A
    NAGAOKA, H
    PHYSICS LETTERS A, 1995, 201 (2-3) : 119 - 124
  • [6] About the quantum Fisher information of nearly pure quantum statistical models
    Paris, Matteo G. A.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2020, 18 (01)
  • [7] Coreset selection can accelerate quantum machine learning models with provable generalization
    Huang, Yiming
    Yuan, Xiao
    Wang, Huiyuan
    Du, Yuxuan
    PHYSICAL REVIEW APPLIED, 2024, 22 (01):
  • [8] The Feasibility of Quantum Algorithms Using Machine Learning Models
    Citko, Wieslaw
    Sienko, Wieslaw
    PRZEGLAD ELEKTROTECHNICZNY, 2019, 95 (09): : 146 - 149
  • [9] Eigensolutions and quantum fisher information for different potential models
    Onate, C. A.
    Okon, I. B.
    Omugbe, E.
    Eyube, E. S.
    Onyeaju, M. C.
    Owolabi, J. A.
    Ikot, A. N.
    AVS QUANTUM SCIENCE, 2023, 5 (02):
  • [10] On the discontinuity of the quantum Fisher information for quantum statistical models with parameter dependent rank
    Seveso, Luigi
    Albarelli, Francesco
    Genoni, Marco G.
    Paris, Matteo G. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (02)