Data-driven design of embedding observers using automatic differentiation

被引:0
|
作者
Fiedler, Julius [1 ]
Gerbet, Daniel [1 ]
Roebenack, Klaus [1 ]
机构
[1] Tech Univ Dresden, Inst Regelungs & Steuerungstheorie, Fak Elektrotech & Informat Tech, D-01062 Dresden, Germany
关键词
High-Gain-Beobachter; Beobachtbarkeitsnormalform; automatisches Differenzieren; neuronale Netze; datenbasiert; high gain observer; observability canonical form; automatic differentiation; neural networks; data-driven; NONLINEAR-SYSTEMS; FORM;
D O I
10.1515/auto-2024-5066
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
High gain observers are frequently utilized to estimate the current internal state of nonlinear systems. The approach relies on transforming the system into the observability canonical form and occasionally embedding it into a higher dimensional space. While this can offer advantages in terms of existence conditions and convergence, the computational and implementation tasks are often daunting. In this paper, we address some of these challenges by using neural networks and automatic differentiation to approximate the necessary functions for implementing the observer. This offers a pragmatic approach to bypassing some of the problems associated with embedding observers.
引用
收藏
页码:745 / 756
页数:12
相关论文
共 50 条
  • [41] Data-driven topology design using a deep generative model
    Shintaro Yamasaki
    Kentaro Yaji
    Kikuo Fujita
    Structural and Multidisciplinary Optimization, 2021, 64 : 1401 - 1420
  • [42] Design of acoustic absorbing metasurfaces using a data-driven approach
    Hamza Baali
    Mahmoud Addouche
    Abdesselam Bouzerdoum
    Abdelkrim Khelif
    Communications Materials, 4
  • [43] Design of acoustic absorbing metasurfaces using a data-driven approach
    Baali, Hamza
    Addouche, Mahmoud
    Bouzerdoum, Abdesselam
    Khelif, Abdelkrim
    COMMUNICATIONS MATERIALS, 2023, 4 (01)
  • [44] Data-driven reduced-order unknown-input observers
    Disaro, Giorgia
    Valcher, Maria Elena
    EUROPEAN JOURNAL OF CONTROL, 2024, 80
  • [45] Data-Driven Disturbance Observers for Estimating External Forces on Soft Robots
    Santina, Cosimo Della
    Truby, Ryan Landon
    Rus, Daniela
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04) : 5717 - 5724
  • [46] Enabling Automatic Repair of Source Code Vulnerabilities Using Data-Driven Methods
    Grishina, Anastasiia
    2022 ACM/IEEE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: COMPANION PROCEEDINGS (ICSE-COMPANION 2022), 2022, : 275 - 277
  • [47] Stochastic Shared Embeddings: Data-driven Regularization of Embedding Layers
    Wu, Liwei
    Li, Shuqing
    Hsieh, Cho-Jui
    Sharpnack, James
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [48] Identifying and embedding transferability in data-driven representations of chemical space
    Gould, Tim
    Chan, Bun
    Dale, Stephen G.
    Vuckovic, Stefan
    CHEMICAL SCIENCE, 2024, 15 (28) : 11122 - 11133
  • [49] Automatic data-driven design and 3D printing of custom ocular prostheses
    Reinhard, Johann
    Urban, Philipp
    Bell, Stephen
    Carpenter, David
    Sagoo, Mandeep S.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [50] Data-driven design of molecular nanomagnets
    Duan, Yan
    Rosaleny, Lorena E.
    Coutinho, Joana T.
    Gimenez-Santamarina, Silvia
    Scheie, Allen
    Baldovi, Jose J.
    Cardona-Serra, Salvador
    Gaita-Arino, Alejandro
    NATURE COMMUNICATIONS, 2022, 13 (01)