Data-driven design of embedding observers using automatic differentiation

被引:0
|
作者
Fiedler, Julius [1 ]
Gerbet, Daniel [1 ]
Roebenack, Klaus [1 ]
机构
[1] Tech Univ Dresden, Inst Regelungs & Steuerungstheorie, Fak Elektrotech & Informat Tech, D-01062 Dresden, Germany
关键词
High-Gain-Beobachter; Beobachtbarkeitsnormalform; automatisches Differenzieren; neuronale Netze; datenbasiert; high gain observer; observability canonical form; automatic differentiation; neural networks; data-driven; NONLINEAR-SYSTEMS; FORM;
D O I
10.1515/auto-2024-5066
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
High gain observers are frequently utilized to estimate the current internal state of nonlinear systems. The approach relies on transforming the system into the observability canonical form and occasionally embedding it into a higher dimensional space. While this can offer advantages in terms of existence conditions and convergence, the computational and implementation tasks are often daunting. In this paper, we address some of these challenges by using neural networks and automatic differentiation to approximate the necessary functions for implementing the observer. This offers a pragmatic approach to bypassing some of the problems associated with embedding observers.
引用
收藏
页码:745 / 756
页数:12
相关论文
共 50 条
  • [31] DATA-DRIVEN ENGINEERING DESIGN RESEARCH: OPPORTUNITIES USING OPEN DATA
    Parraguez, Pedro
    Maier, Anja
    DS87-7 PROCEEDINGS OF THE 21ST INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN (ICED 17), VOL 7: DESIGN THEORY AND RESEARCH METHODOLOGY, 2017, : 41 - 50
  • [32] Design of a Data-Driven Controller using Open-Loop Data
    Nishiya, Yasuteru
    Kinoshita, Takuya
    Yamamoto, Toru
    PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB 2021), 2021, : 125 - 128
  • [33] Design of a Data-Driven Controller using Open-Loop Data
    Nishiya, Y.
    Kinoshita, Takuya
    Yamamoto, Toru
    PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB 2021), 2021, : P60 - P60
  • [34] A Comparison of Data-Driven Automatic Syllabification Methods
    Adsett, Connie R.
    Marchand, Yannick
    STRING PROCESSING AND INFORMATION RETRIEVAL, PROCEEDINGS, 2009, 5721 : 174 - 181
  • [35] AutoQubo: Data-driven automatic QUBO generation
    Moraglio, Alberto
    Georgescu, Serban
    Sadowski, Przemyslaw
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 2232 - 2239
  • [36] Model-aware categorical data embedding: a data-driven approach
    Zhao, Wentao
    Li, Qian
    Zhu, Chengzhang
    Song, Jianglong
    Liu, Xinwang
    Yin, Jianping
    SOFT COMPUTING, 2018, 22 (11) : 3603 - 3619
  • [37] Model-aware categorical data embedding: a data-driven approach
    Wentao Zhao
    Qian Li
    Chengzhang Zhu
    Jianglong Song
    Xinwang Liu
    Jianping Yin
    Soft Computing, 2018, 22 : 3603 - 3619
  • [38] Active data-driven design using dynamic product models
    Domazet, D.S.
    Choong, F.N.
    Sng, D.
    Ho, N.C.
    Lu, S.C.-Y.
    CIRP Annals - Manufacturing Technology, 1995, 44 (01) : 109 - 112
  • [39] Data-driven topology design using a deep generative model
    Yamasaki, Shintaro
    Yaji, Kentaro
    Fujita, Kikuo
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2021, 64 (03) : 1401 - 1420
  • [40] Data-Driven Product Design and Axiomatic Design
    Yang, Bin
    Xiao, Ren-bin
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2021, : 489 - 493