Data-driven design of embedding observers using automatic differentiation

被引:0
|
作者
Fiedler, Julius [1 ]
Gerbet, Daniel [1 ]
Roebenack, Klaus [1 ]
机构
[1] Tech Univ Dresden, Inst Regelungs & Steuerungstheorie, Fak Elektrotech & Informat Tech, D-01062 Dresden, Germany
关键词
High-Gain-Beobachter; Beobachtbarkeitsnormalform; automatisches Differenzieren; neuronale Netze; datenbasiert; high gain observer; observability canonical form; automatic differentiation; neural networks; data-driven; NONLINEAR-SYSTEMS; FORM;
D O I
10.1515/auto-2024-5066
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
High gain observers are frequently utilized to estimate the current internal state of nonlinear systems. The approach relies on transforming the system into the observability canonical form and occasionally embedding it into a higher dimensional space. While this can offer advantages in terms of existence conditions and convergence, the computational and implementation tasks are often daunting. In this paper, we address some of these challenges by using neural networks and automatic differentiation to approximate the necessary functions for implementing the observer. This offers a pragmatic approach to bypassing some of the problems associated with embedding observers.
引用
收藏
页码:745 / 756
页数:12
相关论文
共 50 条
  • [21] Data-Driven Unknown-Input Observers and State Estimation
    Turan, Mustafa Sahin
    Ferrari-Trecate, Giancarlo
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 1424 - 1429
  • [22] Data-driven contract design
    Burkett, Justin
    Rosenthal, Maxwell
    JOURNAL OF ECONOMIC THEORY, 2024, 221
  • [23] Data-Driven Gamification Design
    Meder, Michael
    Rapp, Amon
    Plumbaum, Till
    Hopfgartner, Frank
    PROCEEDINGS OF THE 21ST INTERNATIONAL ACADEMIC MINDTREK CONFERENCE (ACADEMIC MINDTREK), 2017, : 255 - 258
  • [24] Data-driven Logotype Design
    Parente, Jessica
    Martins, Tiago
    Bicker, Joao
    2018 22ND INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV), 2018, : 64 - 70
  • [25] Data-driven Contract Design
    Venkitasubramaniam, Parv
    Gupta, Vijay
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 2283 - 2288
  • [26] Data-Driven Algorithm Design
    Gupta, Rishi
    Roughgarden, Tim
    COMMUNICATIONS OF THE ACM, 2020, 63 (06) : 87 - 94
  • [27] Data-driven and Automatic Surface Texture Analysis Using Persistent Homology
    Yesilli, Melih C.
    Khasawneh, Firas A.
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1350 - 1356
  • [28] Data-driven design of inorganic materials with the Automatic Flow Framework for Materials Discovery
    Corey Oses
    Cormac Toher
    Stefano Curtarolo
    MRS Bulletin, 2018, 43 : 670 - 675
  • [29] Data-driven design of inorganic materials with the Automatic Flow Framework for Materials Discovery
    Oses, Corey
    Toher, Cormac
    Curtarolo, Stefano
    MRS BULLETIN, 2018, 43 (09) : 670 - 675
  • [30] Automatic ship route design between two ports: A data-driven method
    Wen, Yuanqiao
    Sui, Zhongyi
    Zhou, Chunhui
    Xiao, Changshi
    Chen, Qianqian
    Han, Dong
    Zhang, Yimeng
    APPLIED OCEAN RESEARCH, 2020, 96