The role of semicentral idempotents in triangular matrix rings

被引:0
|
作者
Vladeva, D. I. [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Dept Algebra & Log, Sofia, Bulgaria
关键词
Idempotents; matrix rings; triangular matrices; PRODUCTS;
D O I
10.1080/00927872.2024.2398629
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The circle composition e1 degrees e2=e1+e2-e1e2 is well-known from the seminal book of Jacobson. A part of our motivation aims to find non-orthogonal idempotents e1 and e2 such that e1 degrees e2 is an idempotent. Such idempotents are the products rl where r is a right semicentral and l is a left semicentral idempotent of the ring of upper triangular matrices over a ring. We prove that in the semigroup of upper triangular matrices over ring with only trivial idempotents every idempotent matrix can be represented as a circle composition of products of the type rl.
引用
收藏
页码:1024 / 1038
页数:15
相关论文
共 50 条
  • [21] On strongly clean matrix and triangular matrix rings
    Chen, Jianlong
    Yang, Xiande
    Zhou, Yiqiang
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (10) : 3659 - 3674
  • [22] QUASIPOLAR TRIANGULAR MATRIX RINGS OVER LOCAL RINGS
    Cui, Jian
    Chen, Jianlong
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (02) : 784 - 794
  • [23] Skew polynomial rings of formal triangular matrix rings
    Ghahramani, Hoger
    JOURNAL OF ALGEBRA, 2012, 349 (01) : 201 - 216
  • [24] CHARACTERIZATIONS OF JORDAN DERIVATIONS ON TRIANGULAR RINGS: ADDITIVE MAPS JORDAN DERIVABLE AT IDEMPOTENTS
    An, Runling
    Hou, Jinchuan
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 21 : 28 - 42
  • [25] Universal localization of triangular matrix rings
    Sheiham, Desmond
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (12) : 3465 - 3474
  • [26] Derived Equivalences for Triangular Matrix Rings
    Hiroki Abe
    Mitsuo Hoshino
    Algebras and Representation Theory, 2010, 13 : 61 - 67
  • [27] Endomorphisms of upper triangular matrix rings
    Dimitrinka Vladeva
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2024, 65 : 291 - 306
  • [28] Derived Equivalences for Triangular Matrix Rings
    Abe, Hiroki
    Hoshino, Mitsuo
    ALGEBRAS AND REPRESENTATION THEORY, 2010, 13 (01) : 61 - 67
  • [29] An embedding theorem on triangular matrix rings
    Tang, Gaohua
    Zhou, Yiqiang
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (05): : 882 - 890
  • [30] Endomorphisms of upper triangular matrix rings
    Vladeva, Dimitrinka
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2024, 65 (02): : 291 - 306