Endomorphisms of upper triangular matrix rings

被引:1
|
作者
Vladeva, Dimitrinka [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str Block 8, Sofia 1113, Sofia, Bulgaria
关键词
Endomorphism; Idempotent; Triangular matrices over ring; (0,1)-matrix; DERIVATIONS; AUTOMORPHISMS; MAPS;
D O I
10.1007/s13366-023-00688-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the class of endomorphisms alpha of a ring UT M-n(R) of upper triangular n x n matrices such that alpha(eij) is a (0,1)-matrix for any matrix unit e(ij). We use the left and right semicentral idempotents defined and studied by Birkenmeier. We study the idempotent semigroup (E-n(R), .) of endomorphisms of UT M-n(R). An endomorphism alpha is called regular if alpha(e(ii)) = e(ij )or alpha(e(ij)) = 0 for all i = 1, ... , n. In the main results we prove that the class of regular (0,1)-endomorphisms is E-n(R), that the semigroup (En(R), .) consists of all idempotent (0,1)-endomorphisms and all other (0,1)-endomorphisms are roots of idempotents.
引用
收藏
页码:291 / 306
页数:16
相关论文
共 50 条